





## Purpose designed for safe chemical drainage

Specified worldwide and proven as the world leading solution for chemical waste drainage



- Two easy jointing methods Mechanical or Enfusion
- Injection moulded fittings for accuracy and reliability
- Purpose designed for chemical drainage
- Product Portfolio BBA Approved as per certificate reference 19/5644
- Specified world wide for safe chemical drainage



#### Specified worldwide for laboratory drainage for over 65 years

Vulcathene boasts over 65 years proven performance in the laboratories of thousands of schools, universities, hospitals and research facilities around the world... proof of its very high reliability for safe chemical drainage.



Tel: 01626 201092

| Contents                                                           |                |
|--------------------------------------------------------------------|----------------|
| System Overview (Enfusion & Mechanical)                            | 4              |
| Standards & Quality                                                | 5              |
| The System                                                         | 6-7            |
| Material Properties                                                | 8              |
| Product Range Overview                                             |                |
| Pipe, Bench Products and Ancillaries                               | 9              |
| Mechanical Fittings                                                | 10             |
| Enfusion Fittings                                                  | 11             |
| Pipe, Bench Products and Ancillaries                               |                |
| Vulcathene Pipe                                                    | 12             |
| Waste Outlets / Standing Wastes                                    | 12             |
| Plugs / Overflow Assemblies                                        | 13             |
| Drip Cups                                                          | 13-14          |
| Sinks                                                              | 14-15          |
| Troughs / Traps<br>Accessories                                     | 15-18<br>18-20 |
| Flexible Couplings                                                 | 21             |
|                                                                    |                |
| Mechanical Fittings                                                | 00             |
| Bends                                                              | 22             |
| Tees / Wyes                                                        | 23             |
| Corner Branches / U Bends / Couplers                               | 24-25<br>26    |
| Reducers / Adaptors / Sight Glass<br>Thermal Stress Relief Units   | 26-27          |
| Access Pipes / Flanges                                             | 20-27          |
| Olives / Nuts / Blanking Off Plugs / Groove Cutting Tool / Spanner | 28             |
| Polyfusion Adaptors                                                | 29             |
| Mechanical Drainage Design                                         | 30             |
| Making the Mechanical Joint                                        | 31-32          |
| Enfusion Fittings                                                  |                |
| Bends                                                              | 33-34          |
| Tees / Wyes / Branches                                             | 35-36          |
| Tubular Traps                                                      | 37             |
| Couplers / Adaptors                                                | 37-38          |
| Thermal Stress Relief Units                                        | 39             |
| Access Pipes                                                       | 39             |
| Flanges                                                            | 40             |
| Cleanout Plugs                                                     | 40             |
| Vulcathene Enfusion Tools                                          | 41             |
| Enfusion Drainage System                                           | 41             |
| Making the Enfusion Joint                                          | 42-44          |
| Vulcathene Installation Advice                                     | 44-47          |
| UniCollar® Fire Protection                                         | 48-49          |
| Connection to other Pipework                                       | 50-52          |
| Vulcathene Chemical Resistance Data                                | 53-64          |
| Durapipe UK Pipework Systems                                       | 65             |

ouotes@tfpes.co

Two easy jointing methods...



#### **Vulcathene Enfusion System Overview**

Under normal laboratory conditions the Vulcathene Mechanical drainage system is more than sufficient. Where a fused joint is preferred - for example, where pipe is to be buried or run overhead in ceiling voids or in drainage stacks - the Vulcathene Enfusion electrofusion range of chemical waste fittings is recommended.

Vulcathene Enfusion fitting sockets are moulded with an integral resistance wire in place. Jointing is completed by energizing the resistance wire via a microprocessor controlled Enfusion Control Unit.

Vulcathene Enfusion is compatible with Vulcathene Mechanical offering total versatility to the designer of chemical waste drainage systems.

- Design flexibility
- · Easy to install
- Multiple jointing
- · Controlled fusion
- Voltage sensing
- Fusion time adjustment
- · Self-diagnostic unit

Enfusion has proven over time that it produces the optimum level of performance where it matters most - at the joint interface. It offers unprecedented control of jointing - controlled fit, controlled temperature and controlled time.

#### **Vulcathene Mechanical System Overview**

The Vulcathene Mechanical system is a complete purpose-designed chemical resistant plumbing system which embraces laboratory bench items such as wastes, sinks and drip cups, anti-siphon traps, expansion joints plus a comprehensive range of pipe fittings from 38mm to 102mm. Mechanical Jointing, with its unique nut & olive method, is simple & fast to execute and joints can be easily made and remade without affecting the joint's efficiency, allowing system changes to be made at reduced cost. Simple, purpose designed tools ensure correct installation.

- Purpose designed and engineered system
- · Simple, fast jointing method
- Demountable joints
- · Anti-siphon traps
- Borosilicate glass base traps
- · British Board of Agrément approved
- Co-polymer based material
   High chemical resistance rating; abrasion resistant; high impact strength; weather resistant; wide temperature capability
- Unsurpassed record of success in drainage applications



Tel: 01626 201092



### Standards & Quality

Vulcathene products are manufactured in accordance with BS EN ISO 9001. Products are subjected to a range of checks and tests. Detailed records are kept for dimensional and performance tests for each production batch. Each batch is given a unique identification number, which is reproduced on every fitting giving complete traceability.

Vulcathene pipes and fittings are manufactured within an environmental management system which operates in accordance with the requirements of ISO 14001. Whilst there is no specific British or CEN Standard for the performance of a chemical waste drainage system, the products manufactured for the Vulcathene system are covered by Agrément Certificate which ensures their fitness for purpose.



#### **British Board of Agrément Specification Clauses**

#### **Material and Manufacture**

Manufactured from co-polymer polypropylene with Carbon Black ultra-violet Stabilizer. All fittings injection moulded from virgin grade polypropylene. All pipes to be extruded from virgin grade polypropylene.

#### **Mechanical System**

All mechanical joints to be demountable compression. All joints incorporate a positive seal utilising a 'tongued' olive located in a groove cut into the external wall on the pipe. This combines system security with the ability to disassemble the system if required.



All traps should be of the anti-syphonic type, preventing suction developing within the system which could prevent effective drainage of chemicals. Vulcathene traps with a Borosilicate glass base must be used with particularly strong chemical solutions and when large amounts of organic solvents are used.

Where the W691 Dilution Recovery Trap is used, the underside of the trap must be supported to prevent undue strain on the pipework system.



#### **Chemical Resistance**

For chemical resistance data see pages 53-64.

If in any doubt about the action of any chemicals on Vulcathene, or there is the possibility that any of the products in this manual are to be used in situations where specialised or unusual chemicals are involved, please contact our Technical Support Department on +44 (0)1543 471681.

#### CAD & BIM

CAD drawings and BIM models for the Vulcathene chemical drainage system are available for download from www.durapipe.co.uk/technical-support.

#### The System

Vulcathene is a proven chemical resistant pipework system installed in laboratories in schools, universities, hospitals and industrial facilities worldwide in excess of 65 years. Vulcathene is proven with all chemical combinations emptied into it including acids, alkalis, solvents, detergents, blood samples, retro viruses and radioactive wastes.

Vulcathene is a complete laboratory system including waste outlets, sinks, drip cups, anti-siphon traps, dilution recovery traps and a comprehensive range of pipe and fittings in sizes 38mm to 152mm.

Sinks: are extremely robust and moulded with self-draining bases; special size sinks to client specification can also be supplied.

Vulcathene offers a complete system, ideal for laboratory applications in schools, universities, hospitals and industry.

Anti-Siphon Traps: are designed to retain their seals under the most demanding conditions, thereby stopping the backflow of potentially hazardous fumes and the costly closure of laboratories. All traps incorporate a telescopic/adjustable inlet for easier installation under bench sinks or drip cups. Inlet nuts are coloured purple for ease of identification.

Mechanical & Enfusion Tee: Fittings in the Vulcathene range are swept for efficient waste flow and thereby help reduce the incidence of

blockage.

Tel: 01626 201092

# Vulcathene - over 65 years of quality...





Manufacturing: Quality is central to the operation with BS EN ISO 9001 certification and within an environmental management system which operates in accordance with the requirements of ISO 14001.



 Technical support: We offer an unrivalled level of technical support where our experienced team can provide product training and installation advice on any given project. They also provide material take-off advice from architects drawings.



 Laboratory testing: Expert advice about the action of any chemicals on Vulcathene is available from the Vulcathene chemist.



 Warehouse & Stock Control: Using computerised stock control a significant level of Vulcathene stock is maintained.
 We operate through a nationwide distribution network providing swift and local availability of product.



 On site support: Our external sales team are trained in the products and their usage and provide a service to the customer with advice, assistance, training and problem solving on site.



Customer satisfaction: Vulcathene boasts over 65 years proven performance in the laboratories of thousands of schools, universities, hospitals and research facilities around the world... proof of its very high reliability for safe chemical drainage.



Unique Tapered Sealing: Vulcathene waste outlets, drip cups and traps incorporate a unique taper providing a perfect seal when used together.

Borosilicate Glass Base Traps: can cope with particularly strong chemical solutions and organic solvents. Also allows for visible identification and recovery of valuable solids.

#### **Vulcathene Material Properties**

Manufactured from co-polymer polypropylene with Carbon Black ultra-violet Stabilizer.

Vulcathene has very high resistance to chemical attack and is well suited to the conveyance of aggressive chemicals, and other liquids as used in chemical plants and laboratory waste.

The performance specification is based on the need to supply a waste system which has a high chemical resistance rating in respect of the corrosive materials which it has to convey. Good tensile strength, ductility, abrasion resistance, high impact strength, weather resistance, and is stable over the range of temperatures normally encountered in the environment in which it is used.

Vulcathene is resistant to many concentrated acids and alkalis and some organic solvents. Vulcathene also has a good abrasion resistance throughout its operational temperature range of between -20°C and +100°C.

With a smooth bore, it is lightweight with a specific gravity of 0.905. It has high impact strength, which minimises damage during and after installation.

The full specification to which Vulcathene pipe and fittings are manufactured is detailed below.

| Property                                                                            | Test Method                          | Unit          |                               |                   |
|-------------------------------------------------------------------------------------|--------------------------------------|---------------|-------------------------------|-------------------|
| Melt flow index (MFI)                                                               | 230°C/2.16 kg                        | Granules      |                               | 6.5               |
| Density (mean)                                                                      |                                      | kg/m³         |                               | 9.5               |
| Tensile yield stress                                                                | ISO 527<br>ASTM D 638M<br>(50mm/min) | MPa<br>kg/cm² |                               | 27.0<br>295       |
| Flexural modulus                                                                    | ISO 178<br>ASTM D 790                | GPa<br>kg/cm² |                               | 1.15<br>14100     |
| Izod impact strength                                                                | ISO 180<br>(0.25mm notch radius)     | kj/m²         | 23°C<br>0°C<br>-20°C<br>-40°C | 7.0<br>4.5<br>3.0 |
| Rockwell hardness                                                                   | ISO 2039/2, ASTM D 785               | R scale       |                               | 90                |
| Vicat softening temperature<br>(10 N force)                                         | ISO 306A<br>BS 2782; 102 A           | °C            | _/                            | 147               |
| Heat distortion temperature<br>A - 1.8 MPa (18.6kg/cm²)<br>B - 0.45 MPa (4.6kg/cm²) | ISO 75/A and /B<br>ASTM D 648-A-B    | °C<br>°C      |                               | 55<br>90          |
| Flammability                                                                        | ISO 3795  FMVSS 302 (2mm thickness)  | Burning rate  |                               | 38                |
|                                                                                     | (ZIIIII UIICKIIESS)                  | mm/min        |                               | 38                |

#### Pipe



W001 (p12) Vulcathene Pipe



**Bench Products** 

**504 (p12)** Waste



**507 (p12)** Standing Waste Tube



**508 (p13)** Plug & Chain Assembly



**509 (p13)** Overflow Assembly



**501 (p13)** Small Circular Drip Cup



**500 (p13)** Large Circular Drip Cup



**497 (p14)** Small Oval Drip Cup



**499B (p14)** Large Oval Drip Cup



**499T (p14)** Large Oval Drip Cup



**601 (p14)** Sink



**602 (p14)** Sink



**603 (p15)** Running Trough



**W681 (p15)** Dilution Recovery Trap



W691 (p16) Dilution Recovery Trap (Glass Base)



**W561 (p16)** Anti-Siphon Bottle Trap



W571 (p17) Anti-Siphon Bottle Trap (Glass Base)



**W612 (p17)** Dilution Recovery Trap



910G (p17) Dilution Recovery Trap (Glass Base)



**W915 (p18)** Clay Trap



Ancillaries

(p18) Trapped Floor Gully



PC91 (p18) Pipe Clip



W916 (p19) Flexible Connector



W465 (p19) Clamp Saddle



W450 (p19) Air Admittance Valve



**W50 (p20)** Anti-Siphon Unit



(**p20**) Galvanised Support Channel



W641/W642 (p20) Horizontal Inlet



(**p20**) Vulcathene Lubricant



(**p20**) Glass Dip Tube



W651/W652 (p20) Vertical Inlet



(**p20**) Blanking Off Plug



(**p20**) UniCollar® Fire Protection



DC95/DC115 (p21) Flexible Drain Coupling



AC1221/AC1361 AC5144/AC1362 (p21) Flexible Adaptor Coupling



**W18 (p22)** 92<sup>1</sup>/2° Bend



**W29 (p22)** 92<sup>1</sup>/2° Loose Nut Sweep Bend



**W19 (p22)** 135° Slow Bend



W21 (p22) 135° Loose Nut Slow Bend



**W20 (p23)** 92<sup>1</sup>/2° Equal Sweep Tee



**W20 (p23)** 92<sup>1</sup>/2° Reducing Sweep Tee



**W37 (p23)** 45° Single Wye



**W38 (p23)** 45° Double Wye



**W942 (p24)** 90° Corner Branch



**W70 (p24)** 'U' Bend



W16 (p24) Line Coupler



W39 (p25) Reducing Coupler



W14 (p25) M.I. to Pipe Coupler



W15 (p25) F.I. to Pipe Coupler



**W271 (p25)** 1<sup>3</sup>/4" F.I. to Pipe Coupler



W121 (p26)  $1^1$ /4" F.I. to  $1^1$ /2" M.I. BSP Reducer



W45 (p26) Glass Adaptor



W801 (p26) Thermal Stress Relief Unit



W802 (p27) Thermal Stress Relief Unit



W803/W804 (p27) Thermal Stress Relief Unit



**W902/W903/W904 (p27)** Access Pipes



W100 (p27) BS Table D Flange



**W22 (p28)** Olive



W23 (p28) Nut



W24 (p28) Blanking-Off Plug



W26 (p28) Groove Cutting Tool



W36 (p28) Spanner

#### **Polyfusion Adaptors**



C130 (p29) Half Coupler



P758 (p29) BSP Coupler



**200 (p29)** Hand Tool



L28 (p33) Single Socket Long Sweep Bend



L29 (p33) Single Socket Short Sweep Bend



L291A (p33) Loose Nut/Socket Short Sweep Bend



**L17 (p34)**Double Socket Long Sweep Bend



**L18 (p34)**Double Socket Short Sweep Bend



**L19 (p34)** 45° Double Socket Slow Bend



**L21 (p34)** 45° Single Socket Slow Bend



**L20 (p35)** 92<sup>1</sup>/2° Equal Sweep Tee



**L20 (p35)** 92<sup>1</sup>/2° Reducing Sweep Tee



**L37 (p35)** 45° Single Wye



L37 (p35) 45° Reducing Wye



**L35 (p36)** 92<sup>1</sup>/2° Double Branch



**L942 (p36)** 90° Corner Branch



**L101 (p37)** U Bend



L16 (p37) Coupling



L16 (S) (p37) Slip Coupling



L39 (p38) Reducing Coupler



L14 (p38) M.I to Pipe Coupler



**L15 (p38)** F.I to Pipe Coupler



L45 (p38) Glass Adaptor



**L801 (p39)** Thermal Stress Relief Unit



L802 (p39) Thermal Stress Relief Unit



L803/4/6 (p39) Thermal Stress Relief Unit



**L902/3/4 (p39)** Access Pipe



L40 (p40) Flange



L24 (p40) Cleanout Plug



L2610 (p41) Link Cable



**L261 (p41)** Clamp



L2601 (p41) Enfusion Hand-held Unit



Pipe Scraper (p41)

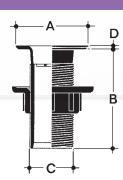
#### W001 Pipe

Produced in nominal internal diameters of 38mm, 51mm, 76mm, 102mm and 152mm (Enfusion only), Vulcathene pipes are supplied in standard 4m lengths.

|                           | 11/2"   | 2"      | 3"      | 4"      | 6"      |
|---------------------------|---------|---------|---------|---------|---------|
| Nominal internal diameter | 38mm    | 51mm    | 76mm    | 102mm   | 152mm   |
| Nominal external diameter | 48.3mm  | 60.3mm  | 89.0mm  | 114.3mm | 168.3mm |
| Kg/m                      | 0.43    | 0.58    | 1.25    | 1.63    | 4.34    |
| Product Code              | V410310 | V410320 | V410330 | V410340 | V410360 |



#### 504 Waste


The range of  $1^1$ /4",  $1^1$ /2", and 2" BSP threaded wastes are produced with flange widths of 60, 73 and 85mm to suit ceramic, porcelain, metal or plastic sink outlets. Slotted wastes are available for use where the waste has to accept an overflow. With an integral grating the waste is supplied with a plug ready to accept a chain fastening. Both the  $1^1$ /4" and  $1^1$ /2" waste outlets are available in all flange diameters and either 89mm or 102mm lengths; the 2" waste outlet is available in 85mm flange diameter and 102mm length only. Unslotted waste outlets are supplied with one waste gasket; slotted wastes are supplied with two waste gaskets. When ordering please indicate

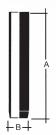
a. Waste diameter; b. Flange diameter; c. Whether slotted or unslotted required.

| Product Code           | A (mm)  | B (mm) | C (inch) | D (mm) |
|------------------------|---------|--------|----------|--------|
| Unslotted Waste        |         |        |          |        |
| V5504011               | 60      | 89     | 11/4     | 3      |
| V5504031               | 73      | 89     | 11/4     | 3      |
| V5504051               | 85      | 89     | 11/4     | 3      |
| V5504071               | 60      | 102    | 1½       | 3      |
| V5504091               | 73      | 102    | 1½       | 3      |
| V5504111               | 85      | 102    | 1½       | 3      |
| V5504131               | 85      | 102    | 2        | 3      |
| gms 11/4"-65; 11/2"-75 | ; 2"-90 |        |          |        |

| Product Code          | A (mm)   | B (mm) | C (inch) | D (mm) |
|-----------------------|----------|--------|----------|--------|
| Slotted Waste         |          |        |          |        |
| V5504021              | 60       | 89     | 11/4     | 3      |
| V5504041              | 73       | 89     | 11/4     | 3      |
| V5504061              | 85       | 89     | 11/4     | 3      |
| V5504081              | 60       | 102    | 1½       | 3      |
| V5504101              | 73       | 102    | 1½       | 3      |
| V5504121              | 85       | 102    | 1½       | 3      |
| V5504141              | 85       | 102    | 2        | 3      |
| gms 11/4"-65; 11/2"-7 | 5; 2"-90 |        |          |        |






#### **507 Standing Waste Tube**

Standing waste tubes are available in three lengths and the diameters are in relation to the need to fit  $1^1/4^n$ ,  $1^1/2^n$ , and  $2^n$  BSP threaded 504 series wastes. If required they can be supplied with a hanging loop. 51mm size supplied in 225mm length only. 32mm and 38mm supplied in 140mm and 178mm lengths only.

| Product code | A (mm) | B (mm) |
|--------------|--------|--------|
| V5507011     | 140    | 32     |
| V5507031     | 178    | 32     |
| V5507051     | 140    | 38     |
| V5507071     | 178    | 38     |
| V5507091     | 225    | 51     |

| Product code             | A (mm) | B (mm) |
|--------------------------|--------|--------|
| Fitted with hanging loop |        |        |
| V5507021                 | 140    | 32     |
| V5507041                 | 178    | 32     |
| V5507061                 | 140    | 38     |
| V5507081                 | 178    | 38     |
| V5507101                 | 225    | 51     |





#### 508 Plug & Chain Assembly

Comprising a 450mm length of stainless steel oval link chain, with a screw stay, the plug and chain assembly is available to fit either  $1^1$ /4",  $1^1$ /2", or 2" BSP No. 504 series waste fittings.

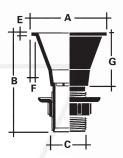
| Product code                  | Size (inch) |  |
|-------------------------------|-------------|--|
| V5508501                      | 11/4        |  |
| V5508101                      | 1½          |  |
| V5508201                      | 2           |  |
| gms 11/4"-40; 11/2"-44; 2"-50 |             |  |



#### 509 Overflow Assembly

The range of 509 overflow assemblies are suitable for installation with a 38mm slotted waste and any sink illustrated in this catalogue. They comprise of an overflow collar connected by a flexible hose to the overflow bend. Because of the varying requirements for placement of the overflow in the side of the sink we recommend that a hole of 42mm diameter be cut in the side of the sink to take the overflow bend. The overflow is extendable from 9" to 22".

| Cat. No.     | 509      |  |
|--------------|----------|--|
| A            | 60mm     |  |
| В            | 48mm     |  |
| gms          | 65       |  |
| Product Code | V5509001 |  |



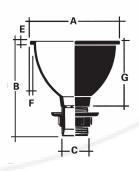

#### 501 Small Circular Drip Cup

The range of 501 small circular drip cups, come with an integral grating and a wall thickness of 3mm. The small circular drip cup has steeply sloping sides to minimise splashing and the 8mm wide rim gives it stability when top mounted in the working surface. With an opening diameter of 86mm and depth of 73mm it is supplied complete with hose restraining plug and backnut.

| Cat. No.     | 501                    |   |
|--------------|------------------------|---|
| A            | 102mm                  | / |
| В            | 136mm                  |   |
| С            | 1 <sup>1</sup> /2" BSP |   |
| E            | 5mm                    | / |
| F            | 6mm                    |   |
| G            | 76mm                   |   |
| Product Code | V5501001               |   |






#### 500 Large Circular Drip Cup

The range of 500 large circular drip cups come with an integral grating and a wall thickness of 3mm. The large circular drip cup is designed for top mounting. With a top opening diameter of 146mm it is 114mm deep and the 11mm wide rim gives it stability when top mounted in the working surface.

It is supplied complete with a backnut and hose restraining plug.

| Cat. No.     | 500                    |   |
|--------------|------------------------|---|
| A            | 168mm                  |   |
| В            | 165mm                  |   |
| С            | 1 <sup>1</sup> /2" BSP | ~ |
| E            | 8mm                    |   |
| F            | 11mm                   |   |
| G            | 114mm                  |   |
| Product Code | V5500001               |   |





#### 497 Small Oval Drip Cup

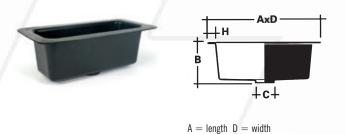
The range of 497 small oval drip cups are moulded with a 3mm thick wall and have an opening of 166mm x 90mm x 143mm deep. The 6mm wide rim gives it stability when top mounted in the working surface. It has an integral grating, is designed for top mounting and is supplied complete with backnut.

| Cat. No.     | 497       |
|--------------|-----------|
| A            | 178mm     |
| В            | 216mm     |
| С            | 1¹/2" BSP |
| D            | 102mm     |
| E            | 6mm       |
| F            | 6mm       |
| G            | 143mm     |
| Product Code | V5497001  |



#### 499B/499T Large Oval Drip Cup

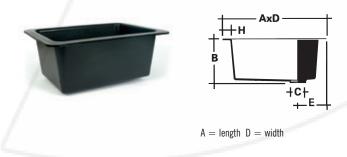
The range of 499 Large Oval Drip Cups are moulded with a 3mm thick wall, offering a choice of 2 alternative flange fixings. Moulded with deeply curved bowls, they have integral gratings and are supplied complete with backnuts and a hose restraining plug. The 499B and 499T are designed for top mounting.


| Cat. No.     | 499B                   | 499T                   |  |
|--------------|------------------------|------------------------|--|
| A            | 264mm                  | 305mm                  |  |
| В            | 225mm                  | 225mm                  |  |
| С            | 1 <sup>1</sup> /2" BSP | 1 <sup>1</sup> /2" BSP |  |
| D            | 111mm                  | 152mm                  |  |
| E            | 6mm                    | 6mm                    |  |
| F            | 13mm                   | 32mm                   |  |
| G            | 161mm                  | 161mm                  |  |
| Product Code | V5499001               | V5490001               |  |



#### 601 Sink

The 601 sink is extremely robust and has a self-draining base. Its recessed outlet will accept the flange of the  $1^1/2^n$  BSP 504 non-overflow threaded outlet but, if required, a 509 overflow assembly can be fitted. These sinks are designed for mounting on the underside of work surfaces.

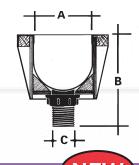

| Cat. No.     | 601     |   |   |
|--------------|---------|---|---|
| A            | 492mm   | / | _ |
| В            | 171mm   | / |   |
| С            | 76 mm   |   | ٦ |
| D            | 241mm   | / | 7 |
| Н            | 32mm    |   |   |
| gms          | 1030    |   | _ |
| Radius       | 36mm    |   |   |
| Product Code | V460100 |   |   |



#### 602 Sink

The 602 sink is extremely robust and has a self-draining base. Its recessed outlet will accept the flange of the  $1^1/2^n$  BSP 504 non-overflow threaded outlet but, if required, a 509 overflow assembly can be fitted. These sinks are designed for mounting on the underside of work surfaces.

| Cat. No.     | 602     |
|--------------|---------|
| A            | 552mm   |
| В            | 231mm   |
| C            | 74mm    |
| D            | 400mm   |
| E            | 152mm   |
| Н            | 35mm    |
| gms          | 2668    |
| Radius       | 35mm    |
| Product Code | V460200 |




#### 603 Running Trough

Fabricated to customers specific requirements the running trough is manufactured with 3mm thick walls and is supplied complete with waste outlet - as specified - and supporting framework.

| Cat. No. | 603                           |
|----------|-------------------------------|
| A        | 127mm                         |
| В        | 210mm                         |
| С        | 1 <sup>1</sup> /2" BSP 2" BSP |





#### **W561 Anti-Siphon Bottle Trap**

Retaining its seal under the most demanding conditions this trap is completely dependable and is ideal for the most severe conditions. With a 76mm liquid seal, the base can be unscrewed from the body for easy cleaning. The trap has an adjustable height inlet for easier connection to Vulcathene waste pipe.

Provided with a purple coloured  $1^1/2^n$  BSP loose nut coupling for screwing to waste or drip cup tails, the 'P' outlet is supplied with nut and olive to take 38mm Vulcathene mechanical pipe. When required a W291/L291A 38mm bend will convert it to an 'S' trap.

| Cat. No.     | W561                                 |  |
|--------------|--------------------------------------|--|
| A            | 77mm                                 |  |
| В            | 203mm                                |  |
| C            | 141mm                                |  |
| D            | 90.5 mm                              |  |
| E            | 1 <sup>1</sup> /2" Mechanical thread |  |
| F            | 1 <sup>1</sup> /2" BSP               |  |
| G            | 313mm                                |  |
| gms          | 300                                  |  |
| Product Code | V1056101                             |  |



#### W681 Dilution Recovery Trap/Adjustable Inlet

Easily emptied, by unscrewing the base from the trap, this large capacity anti-siphonic dilution recovery trap has a 76mm liquid seal and holds 2.3 litres. The trap has an adjustable height inlet for easier connection to Vulcathene waste pipe. The  $1^1/2^{11}$  purple coloured BSP inlet includes a loose nut coupling for connection to a waste outlet or drip cup tail. The trap is supplied with a nut and olive to enable it to be 'P' trap configured for 38mm pipe. The addition of a W291 38mm bend will change the configuration to an 'S' trap.

| Cat. No.     | W681                                 |   |
|--------------|--------------------------------------|---|
| A            | 77mm                                 |   |
| В            | 329mm                                |   |
| С            | 267mm                                | / |
| D            | 141mm                                |   |
| E            | 1 <sup>1</sup> /2" Mechanical thread |   |
| F            | 1 <sup>1</sup> /2" BSP               |   |
| G            | 439mm                                |   |
| gms          | 480                                  |   |
| Product Code | V1068101                             |   |
|              |                                      |   |

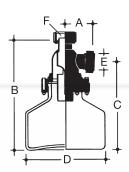




#### W691 Dilution Recovery Trap (Glass Base)

The 691 trap has a total capacity of 2.3 litres and a 76mm liquid seal.

The clear base of heat resistant, borosilicate glass makes this an ideal choice for use in waste systems which have to cope with large quantities of solid waste matter. The trap allows the volume of solids collected to be quickly assessed and, where necessary, cleared, before they can cause any damage to the system. It also allows the identification and recovery of valuable solids.


In order to remove the dilution chamber from the trap body, the glass unit should be unscrewed complete with its flange assembly. The  $1^1/2^n$  BSP inlet includes a loose nut coupling for connection to a waste outlet or drip cup tail.

The trap is supplied with a nut and olive to enable it to be 'P' trap configured for 38mm pipe. The addition of a W291 38mm bend will change the configuration to an 'S' trap.

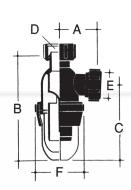
When installed it is important to support the underside of the trap (at least 76mm above the floor) to avoid weight strain on the pipework and connections.

| Cat. No.     | W691                                 |   |
|--------------|--------------------------------------|---|
| A            | 77mm                                 |   |
| В            | 314mm                                |   |
| С            | 252mm                                | 1 |
| D            | 229mm                                |   |
| E            | 1 <sup>1</sup> /2" Mechanical thread |   |
| F            | 1 <sup>1</sup> /2" BSP               |   |
| gms          | 2390                                 |   |
| Product Code | V1069101                             |   |





#### W571 Anti-Siphon Bottle Trap (Glass Base)


Retaining its seal under the most demanding conditions this trap is completely dependable and is ideal for the most severe conditions. With a 76mm liquid seal, the base can be unscrewed from the body for easy cleaning.

Provided with a  $1^1/2^n$  BSP loose nut coupling for screwing to waste or drip cup tails, the 'P' outlet is supplied with nut and olive to take 38mm Vulcathene mechanical pipe. When required a W291/L291A 38mm bend will convert it to an 'S' trap.

The clear base of heat resistant, borosilicate glass makes this an ideal choice for use in waste systems which have to cope with large quantities of solid waste matter. The trap allows the volume of solids collected to be quickly assessed and, where necessary, cleared, before they can cause any damage to the system. It also allows the identification and recovery of valuable solids.

| Cat. No.     | W571                    |   |     |
|--------------|-------------------------|---|-----|
| A            | 77mm                    |   |     |
| В            | 219mm                   |   |     |
| С            | 156mm                   |   |     |
| D            | 1 <sup>1</sup> /2" BSP  | / |     |
| E            | 11/2" Mechanical thread |   |     |
| F            | 90mm                    | / |     |
| gms          | 923                     |   |     |
| Product Code | V1057101                |   | - 7 |

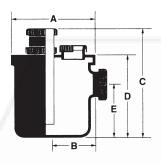




#### W612 Dilution Recovery Trap

With a 4.5 litre capacity and a 76mm trap seal the W612 is particularly useful for those situations where under-bench height is limited.

When cleaning out the unit, union nuts on the lid should be disconnected, the dip tubes withdrawn and the interior of the dilution chamber carefully flushed out

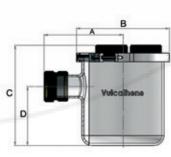

No attempt should be made to separate the lid from the dilution chamber.

For a 'P' outlet, a 51 mm nut and olive is supplied, and for an 'S' outlet, add a W292 51 mm bend.

Where it is intended to use the unit as a dilution chamber only, the dip tubes should be omitted. The unit is supplied with dip tubes, nuts, olives and blanking off plug. (Additional dip tubes and blanking off plugs can be ordered separately).

| Cat. No.     | W612     |   |
|--------------|----------|---|
| A            | 230mm    |   |
| В            | 121mm    |   |
| С            | 318mm    |   |
| D            | 244mm    |   |
| E            | 168mm    |   |
| gms          | 2250     |   |
| Product Code | V1061201 | / |

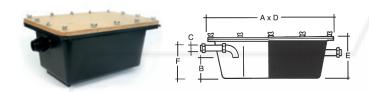





#### 910G Dilution Recovery Trap (Glass Base)

With a 4.5 litre capacity and a 76mm trap seal the 910G, with its clear base of heat resistant, borosilicate glass allows the volume of solids collected to be quickly assessed and, where necessary, cleared. It also allows the identification and recovery of valuable solids. The new 910G is supplied with a removable lid & gasket seal, both held in place by a stainless steel clamp which can be easily removed for access & maintenance. Outlet connection is 51mm, with nut & olive supplied. Dip tubes, vertical inlets, horizontal inlets and blanking off plugs should be ordered separately.

| 910G     |                                 |
|----------|---------------------------------|
| 208mm    | · /                             |
| 246mm    |                                 |
| 265mm    |                                 |
| 156mm    |                                 |
| 4010     |                                 |
| V1910001 |                                 |
|          | 246mm<br>265mm<br>156mm<br>4010 |






#### W915 Clay Trap

With a 20 litre capacity the  $552 \times 400 \times 270 \text{mm}$  deep clay trap incorporates inlet, and outlet connections at opposite ends, which accept W151 38mm FI BSP connectors. The outlet connection has a 76mm liquid seal and the lid, which has a sealing ring, is retained in position with fourteen wing nuts.

| Cat. No.     | W915     |   |
|--------------|----------|---|
| A            | 552mm    |   |
| В            | 76mm     |   |
| С            | 38mm     | / |
| D            | 400mm    | / |
| E            | 270mm    |   |
| F            | 171mm    |   |
| gms          | 8900     | / |
| Product Code | V1091501 |   |



#### Trapped Floor Gully

The 4.5 litre trapped floor gully is fabricated from beige grey polypropylene and has a 76mm liquid seal. The removable grating gives easy access to the interior for cleaning.

The gully has a 76mm plain ended outlet for either Mechanical or Enfusion jointing. Additional side or back inlets in positions A, B or C (as indicated) can be supplied to order.

Note: Vulcathene floor gullies are fabricated to order.

| Nom. Size    | 4.5 litres                |  |
|--------------|---------------------------|--|
| A            | 250mm                     |  |
| L            | 320mm                     |  |
| D            | 89.0mm (Outside Diameter) |  |
| gms          | 3420                      |  |
| Product Code | V1810100                  |  |



#### PC91 Pipe Clip

Of snap-on type these clips retain the pipe securely in place while allowing lateral movement of the pipe caused by fluctuations in thermal conditions.

**Note:** When 76mm and 102mm pipe are installed in long vertical runs considerable strain may be caused by thermal movement. In such conditions metal brackets should be used to retain the pipe, ie. Munson Ring.

| Cat. No.     | 91       |          |          |          |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 38mm     | 44mm     | 67mm     | 89mm     |
| В            | 60mm     | 76mm     | 111mm    | 140mm    |
| С            | 19mm     | 19mm     | 32mm     | 32mm     |
| gms          | 32       | 52       | 82       | 120      |
| Product Code | V5091101 | V5091201 | V5091301 | V5091401 |



#### W916 Flexible Connector

Standard flexible connectors manufactured from polypropylene for use with mobile fume cupboards. The ends are pre-grooved with nut and olive supplied.

| Product Code | Size | Length (m) |   |
|--------------|------|------------|---|
| V5916001     | 38mm | 1          |   |
| V5916015     | 38mm | 1.5        | _ |
| V5916002     | 38mm | 2          | _ |
| V5916003     | 38mm | 3          |   |





#### W465 Clamp Saddle

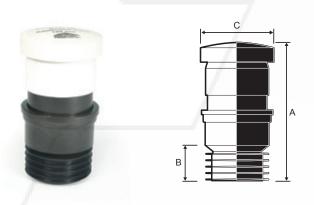
Clamp saddles enable easy connection of new branch pipes to existing Vulcathene stacks. The saddles have BSP female threaded outlets, nitrile seals, zinc plated hardware and are a charcoal grey colour supplied in four sizes. 76mm saddles are supplied with 4 x bolts; 102mm saddles with 6 x bolts.

For connection to 38mm and 51mm Vulcathene pipes use Vulcathene Mechanical or Enfusion male BSP adapters.

(See clamp saddle installation information on Page 47)

| Cat. No. | W465                           |      |     | Product Code |
|----------|--------------------------------|------|-----|--------------|
| Sizes:   | 102mm x 2" BSP                 | gms: | 540 | V465050      |
|          | 102mm x 1 <sup>1</sup> /2" BSP |      | 500 | V465060      |
|          | 76mm x 2" BSP                  |      | 440 | V465070      |
|          | 76mm x 1 <sup>1</sup> /2" BSP  |      | 430 | V465080      |



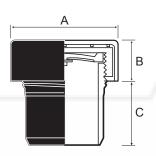

#### W450 Air Admittance Valve

Air admittance valves enable Vulcathene stacks to be terminated inside the building thereby avoiding costly roof penetration. They are designed to prevent the release of foul air whilst admitting air under conditions of reduced pressure in discharge pipes preventing water seals in traps from being drawn. The valves also contribute to the ventilation of the main drain to which the discharge stack incorporating the valve is connected.

The Vulcathene air admittance valve is designed to suit 102mm Vulcathene pipe and incorporates a rubber finned tail for internal pipe connection and a removable screw cap for maintenance access.

To connect to a 76mm Vulcathene stack use a 102mm/76mm reducer and insert the valve into the 102mm socket. The AAV is approved to BS EN 12380 (B1)

| Cat. No.     | W450    |   |
|--------------|---------|---|
| Sizes:       | 102mm   | / |
| A            | 245mm   |   |
| В            | 60mm    |   |
| C            | 135mm   |   |
| gms          | 872     |   |
| Product Code | V466040 | / |




#### W50 Anti-Siphon Unit

Anti-siphon units are designed to prevent the release of foul air whilst admitting air under conditions of induced or self-siphonage in discharge pipes preventing water seals in traps from being drawn. The W50 is suitable for connection to 51mm Vulcathene pipe and incorporates a rubber seal which must first be inserted into the pipe followed by the anti-siphon unit. The anti-siphon unit is approved to BS EN12380 (A11)

| Cat. No.     | W50     |  |
|--------------|---------|--|
| Sizes:       | 51mm    |  |
| Α            | 61mm    |  |
| В            | 22mm    |  |
| С            | 36mm    |  |
| Product Code | V467020 |  |





#### **Galvanised Support Channel**

A galvanised metal support channel, supplied in standard 2.5 metre lengths, should be used where Vulcathene pipework requires continuous support.

|        |       | Product Code |
|--------|-------|--------------|
| Sizes: | 38mm  | V465010      |
|        | 51mm  | V465020      |
|        | 76mm  | V465030      |
|        | 102mm | V465040      |
|        |       |              |



#### W641/W642 Horizontal Inlet

For use with 910G Dilution Recovery Traps to make a horizontal pipe connection.

| Cat. No.     | W641     | W642     |
|--------------|----------|----------|
| gms          | 148      | 207      |
| Product Code | V1064101 | V1064201 |



#### **Vulcathene Lubricant**

Supplied in 200g pots, Vulcathene lubricant should be applied to the threads of fittings before making a mechanical joint.

Product Code

V5900002



#### Glass Dip Tube

For use with 910G Dilution Recovery Traps

Product Code V5913001



#### W651/W652 Vertical Inlet

For use with 910G Dilution Recovery Traps to make a vertical pipe connection.

| Cat. No.     | W651     | W652     |
|--------------|----------|----------|
| gms          | 97       | 135      |
| Product Code | V1065101 | V1065201 |



#### Blanking Off Plug

For use with 910G Dilution Recovery Traps

Product Code V5912001



#### **UniCollar® Fire Protection**

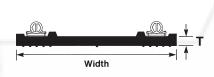
UniCollar is a unique method of protecting Vulcathene pipes which pass through fire rated walls and floors. The system is supplied in continuous strip form which is cut to length and attached to the element using ready-made clips. These clips fit into the pre-punched slots on the strip.

UniCollar is packed in a box which contains 2250mm length of collar or 150 segments. The box has installation details on one face. The collar is designed so that it can be cut and snapped in segments of 15mm.

One box is the equivalent of 5 x 102mm (114.3mm OD) Vulcathene collars.

Product Code V468100

For details on fire rating and installation see pages 48 and 49.

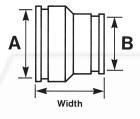



#### DC95/DC115 Flexible Drain Coupling

For connecting 76mm and 102mm Vulcathene stacks to underground drainage systems of other materials where a flange connection is not available. Flexible drain couplings, with nitrile sleeves, incorporate medium duty stainless steel clamping bands at either end.

| Cat. No.        | DC95              | DC115                 |
|-----------------|-------------------|-----------------------|
| Size range (mm) | 80-95             | 100-115               |
| Width (mm)      | 100               | 100                   |
| 'T' (mm)        | 7                 | 7                     |
| Application     | 75mm (3") ABS     | 100mm PVC-U           |
|                 | 75mm Cast Iron    | 100mm PE              |
|                 | 75mm Ductile Iron | 100mm Stainless Steel |
| gms             | 402               | 435                   |
| Product Code    | V100DC95          | V10DC115              |



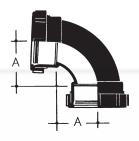



#### AC1221/AC1361 AC5144/AC1362 Flexible Adaptor Coupling

For connecting 76mm and 102mm Vulcathene stacks to underground drainage systems of other materials where a flange connection is not available. Flexible adaptor couplings have a stepped moulded nitrile sleeve with different diameters at each end to enable pipes of differing outside diameters to be jointed economically and quickly without the use of bushes. The sleeve is fitted with two stainless steel clamping bands by which they are secured to the pipe ends.

| Cat. No.       | AC1221        | AC1361         | AC5144          | AC1362          |
|----------------|---------------|----------------|-----------------|-----------------|
| Size range A/B | 110-122/80-95 | 121-136/80-95  | 110-125/100-115 | 121-136/100-115 |
| (mm)           |               |                |                 |                 |
| Width (mm)     | 100           | 100            | 100             | 100             |
| Application    | PVC-U         | Vitrified Clay | Supersleeve     | Vitrified Clay  |
| (100mm)        | Cast Iron     | Asbestos       | Cast Iron       | Salt Glazed     |
|                | Supersleeve   | Cement         |                 | Ware            |
|                |               | Salt Glazed    | Ductile Iron    | Asbestos        |
|                |               | Ware           | Asbestos        | Cement          |
|                |               |                | Cement          |                 |
| gms            | 400           | 460            | 463             | 500             |
| Product Code   | V1AC1221      | V1AC1361       | V1AC5144        | V1AC1362        |
|                |               |                |                 |                 |



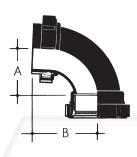



#### W18 921/2° Bend

Both ends have standard nut and olive connections.

| Cat. No.     | W181     | W182     | W183     | W184     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 43mm     | 64mm     | 86mm     | 100mm    |
| gms          | 64       | 113      | 343      | 625      |
| Product Code | V1018101 | V1018201 | V1018301 | V1018401 |



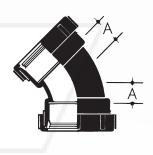



#### W29 921/2° Loose Nut Sweep Bend

One end has the standard nut and olive connection whilst the other has a captive nut for connection to threaded units.

| Cat. No.     | W291     | W292     | W293     | W294     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 54mm     | 64mm     | 87mm     | 104mm    |
| В            | 65mm     | 93mm     | 136mm    | 167mm    |
| gms          | 68       | 109      | 338      | 613      |
| Product Code | V1029101 | V1029201 | V1029301 | V1029401 |



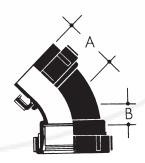



#### W19 135° Slow Bend

Both ends have standard nut and olive connections

| Cat. No.     | W191     | W192     | W193     | W194     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 15mm     | 16mm     | 51mm     | 48mm     |
| gms          | 75       | 120      | 291      | 900      |
| Product Code | V1019101 | V1019201 | V1019301 | V1019401 |



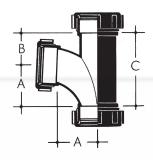



#### W21 135° Loose Nut Slow Bend

One end has the standard nut and olive connection whilst the other has a captive nut for connection to threaded units.

| Cat. No.     | W211     | W212     | W213     | W214     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 44mm     | 44mm     | 102mm    | 114mm    |
| В            | 15mm     | 18mm     | 51mm     | 45mm     |
| gms          | 44       | 66       | 294      | 468      |
| Product Code | V1021101 | V1021201 | V1021301 | V1021401 |



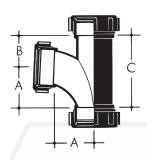



#### W20 921/2° Equal Sweep Tee

The three equal sized ends have standard nut and olive connections.

| Cat. No.     | W201     | W202     | W203     | W204     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 59mm     | 62mm     | 83mm     | 98mm     |
| В            | 39mm     | 52mm     | 39mm     | 76mm     |
| С            | 97mm     | 114mm    | 122mm    | 175mm    |
| gms          | 104      | 160      | 471      | 860      |
| Product Code | V1020101 | V1020201 | V1020301 | V1020401 |



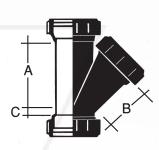



#### W20 921/2° Reducing Sweep Tee

The two equal and one reduced sized ends have standard nut and olive connections.

| Cat. No.     | W2021    |   |  |
|--------------|----------|---|--|
| Nom. Size    | 51x38mm  |   |  |
| A            | 58mm     |   |  |
| В            | 45mm     | / |  |
| С            | 114mm    |   |  |
| gms          | 146      |   |  |
| Product Code | V1020211 |   |  |



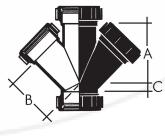



#### W37 45° Single Wye

The three equal sized ends have standard nut and olive connections.

| Cat. No.     | W371     | W372     | W373     | W374     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 86mm     | 91mm     | 177mm    | 213mm    |
| В            | 64mm     | 76mm     | 152mm    | 178mm    |
| C            | 8mm      | 17mm     | 43mm     | 49mm     |
| gms          | 96       | 151      | 650      | 1087     |
| Product Code | V1037101 | V1037201 | V1037301 | V1037401 |



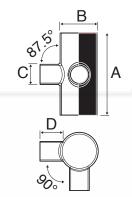



#### W38 45° Double Wye

Available in all sizes. The four equal sized ends have standard nut and olive connections.

| Cat. No.     | W381     | W382     | W383     | W384     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 86mm     | 91mm     | 177mm    | 213mm    |
| В            | 64mm     | 76mm     | 152mm    | 178mm    |
| C            | 8mm      | 17mm     | 43mm     | 49mm     |
| gms          | 180      | 228      | 800      | 1600     |
| Product Code | V1038101 | V1038201 | V1038301 | V1038401 |






#### W942 90° Corner Branch

The 90° Corner branch is available in size  $102 mm \times 51 mm$  with spigot ends for either Mechanical or Enfusion jointing. The 51 mm branches are at  $92^1/2^\circ$  to the main bore. Additional nuts and olives are required for Mechanical jointing unless connecting to another Vulcathene Mechanical fitting. For 38 mm branch connections use Vulcathene W3921 reducers.

| Cat. No.     | W942         |  |
|--------------|--------------|--|
| Sizes:       | 102mm x 51mm |  |
| Α            | 250mm        |  |
| В            | 114.3mm      |  |
| С            | 60.3mm       |  |
| D            | 62.9mm       |  |
| gms          | 480          |  |
| Product Code | V1094201     |  |





#### W70 'U' Bend

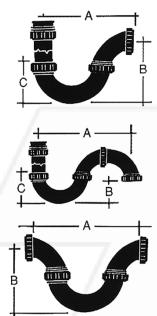
Available in 38mm and 51mm sizes the 'U' bend can be combined with other standard fittings from the range to make up 'P', 'S' and Running Traps with a 76mm trap seal.

In order to make up both 'P' and 'S' configurations the addition of a length of Vulcathene mechanical pipe, and a W15 coupler, to one end enables it to be connected to the waste fitting whilst the addition of a W29 loose nut sweep bend converts it into a 'P' trap.

The addition of a further W29 make it into a 'S' trap. Connecting a W29 to each end of the 'U' bend makes up a running trap.

| Cat. No.  | 'P' Trap   |            | 'S' Tra | р     | 'Runnin | g' Trap |
|-----------|------------|------------|---------|-------|---------|---------|
| Nom. Size | 38mm       | 51mm       | 38mm    | 51mm  | 38mm    | 51mm    |
| A         | 219mm      | 259mm      | 235mm   | 273mm | 199mm   | 231mm   |
| В         | 136mm      | 171mm      | 85mm    | 75mm  | 136mm   | 171mm   |
| С         | 84mm       | 100mm      | 84mm    | 100mm | 7       |         |
| gms       | 140 (38mm) | 236 (51mm) |         |       |         |         |

| Product Code | 38mm | V1070101 |  |
|--------------|------|----------|--|
|              | 51mm | V1070201 |  |

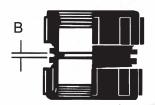

#### **Component fittings**

required for:

|           | 'P' 1 | rap* | 'S' Tı   | rap*     | 'Running | ' Trap   |
|-----------|-------|------|----------|----------|----------|----------|
| Nom. Size | 38mm  | 51mm | 38mm     | 51mm     | 38mm     | 51mm     |
| Cat No.   | W151  | W152 | W151     | W152     | W701     | W702     |
| Cat No.   | W291  | W292 | 2 x W291 | 2 x W292 | 2 X W291 | 2 x W292 |
| Cat No.   | W701  | W702 | W701     | W701     | -        | -        |

<sup>\*</sup> Short length of Vulcathene pipe required.






#### W16 Line Coupler

For connecting equal sized pipes together. Supplied with two nuts and olives.

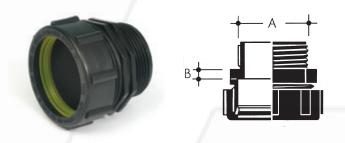
| Cat. No.     | W161     | W162     | W163     | W164     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| В            | 3mm      | 3mm      | 6mm      | 6mm      |
| gms          | 29       | 46       | 183      | 301      |
| Product Code | V1016101 | V1016201 | V1016301 | V1016401 |





#### W39 Reducing Coupler

The six reducing couplers which cover the range all have nut and olive connections on the small diameter end while the spigot end is grooved, ready to accept the nut and olive from the fitting which is to be reduced.

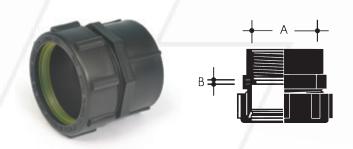

| Cat. No.     | W3921      | W3931      | W3932      |
|--------------|------------|------------|------------|
| Nom. Size    | 51 x 38mm  | 76 x 38mm  | 76 x 51mm  |
| Α            | 40mm       | 60mm       | 57mm       |
| gms          | 44         | 95         | 102        |
| Product Code | V1039211   | V1039311   | V1039321   |
|              |            |            |            |
| Cat. No.     | W3941      | W3942      | W3943      |
| Nom. Size    | 102 x 38mm | 102 x 51mm | 102 x 76mm |
| A            | 97mm       | 89mm       | 71mm       |
| gms          | 180        | 186        | 251        |
| Product Code | V1039411   | V1039421   | V1039431   |
|              |            |            |            |



#### W14 M.I. to Pipe Coupler

With standard BSP parallel threads the W14 Pipe Coupler can be screwed direct into the F.I. fittings of metal or plastic pipes.

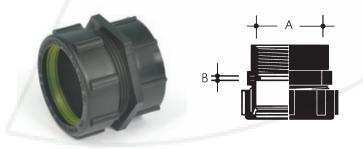
| Cat. No.     | W141                   | W142     |   |
|--------------|------------------------|----------|---|
| Nom. Size    | 38mm                   | 51mm     | 7 |
| A            | 1 <sup>1</sup> /2" BSP | 2" BSP   | 7 |
| В            | 6mm                    | 6mm      |   |
| gms          | 31                     | 53       |   |
| Product Code | V1014101               | V1014201 |   |




#### W15 F.I. to Pipe Coupler

With standard BSP parallel threads the W15 Pipe Coupler can be screwed directly to M.I. ends of metal or plastic pipes. The 38mm unit can be screwed to the threaded tail of a waste or drip cup when a pipe connection is required.

The 51mm unit can be screwed to the threaded tail of a 51mm waste.

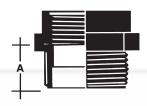

| Cat. No.     | W151                   | W152     |
|--------------|------------------------|----------|
| Nom. Size    | 38mm                   | 51mm     |
| A            | 1 <sup>1</sup> /2" BSP | 2" BSP   |
| В            | 3mm                    | 3mm      |
| gms          | 35                     | 52       |
| Product Code | V1015101               | V1015201 |



#### W271 13/4" F.I. to Pipe Coupler

Made in one size only, this fitting should be used when joining 38mm Vulcathene Mechanical pipe to 38mm Vulcathene Polyfusion pipe. It may also be screwed to the outlet of any Vulcathene Polyfusion trap to provide a connection for 38mm Mechanical pipe.

| Cat. No.     | W271                   |  |
|--------------|------------------------|--|
| Nom. Size    | 38mm                   |  |
| A            | 1 <sup>3</sup> /4" BSP |  |
| В            | 5mm                    |  |
| gms          | 32                     |  |
| Product Code | V1027101               |  |

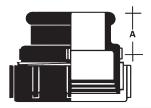



#### W121 11/4" F.I. x 11/2" M.I. BSP Reducer

**Note:** Used when jointing the Vulcathene mechanical system to a  $1^1$ /4" BSP waste tail. When making a connection to pipe a W151 38mm F.l. coupler should first be added to the outlet of a W121 reducer. Alternatively, the outlet of W121, which has a standard  $1^1$ /2" BSP parallel thread, will accept the connecting nut of any of the Vulcathene traps illustrated in this catalogue.

| Cat. No.     | W121     |  |
|--------------|----------|--|
| Nom. Size    | 38mm     |  |
| Α            | 32mm     |  |
| gms          | 27       |  |
| Product Code | V1012101 |  |



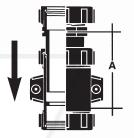



#### W45 Glass Adaptor

Used when jointing the Vulcathene mechanical system to a glass drainage system. Available in Flame Retardant Polpropylene (FRPP) only.

| Cat. No.     | W451     | W452     | W453     | W454     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 28mm     | 31mm     | 44mm     | 44mm     |
| gms          | 37       | 63       | 192      | 317      |
| Product Code | V1045104 | V1045204 | V1045304 | V1045404 |





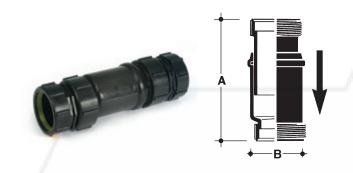

#### W801 Thermal Stress Relief Unit

The W801 can be installed either vertically or horizontally. When installed it is important to ensure that the end with the moulded fixing clip is the outflow end of the fitting.

| Cat. No.     | W801     | / |
|--------------|----------|---|
| Nom. Size    | 38mm     | / |
| A min        | 70mm     | / |
| A max        | 108mm    |   |
| Product Code | V1011101 | / |






#### W802 Thermal Stress Relief Unit

The W802 can be installed either vertically or horizontally. When installed it is important to ensure that the end which forms the collar is the outflow end of the fitting.

The W802 SRU is supplied with 51mm mechanical Pipe Couplers at each end.

The unit must be anchored with a metal clamp which should be located round the body of the SRU, just below the ridge round the top of the collar. This allows the pipe inserted into the collar to move freely.

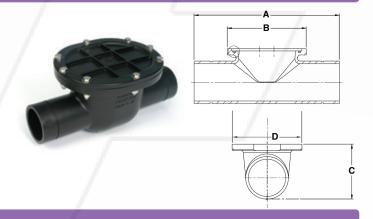
| Cat. No.     | W802     |   |
|--------------|----------|---|
| Nom. Size    | 51mm     |   |
| A min        | 149mm    |   |
| A max        | 203mm    | / |
| В            | 73mm     |   |
| gms          | 243      |   |
| Product Code | V5452201 | / |



#### W803/W804 Thermal Stress Relief Unit

The W803 and W804 unit can be installed either vertically or horizontally. When installed it is important to ensure that the spigot end is the outflow end of the fitting. The unit must be anchored with a metal clamp which should be located on top of the moulded locators round the body of the SRU, which then allows the pipe inserted into the collar to expand and contract.

The body of the SRU incorporates an 0-ring seal.

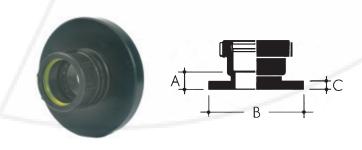

| Cat. No.     | W803     | W804     |
|--------------|----------|----------|
| Nom. Size    | 76mm     | 102mm    |
| A            | 196mm    | 215mm    |
| В            | 117.2mm  | 144.5mm  |
| С            | 110mm    | 141mm    |
| D            | 101.7mm  | 129mm    |
| E            | 89.7mm   | 115mm    |
| gms          | 575      | 900      |
| Product Code | V1080301 | V1080401 |



#### W90 Access Pipes

Correctly sited at critical points in the pipeline, access pipes simplify the clearing of blockages, inspection and thorough cleansing of the installation. With a clear flow bore, the W90 series access pipes have a bolt on cover and grooved spigot ends to accept nut and olive connection to the Vulcathene Mechanical System.

| Cat. No.     | W902     | W903     | W904     |
|--------------|----------|----------|----------|
| Nom. Size    | 51mm     | 76mm     | 102mm    |
| A            | 260mm    | 302mm    | 390mm    |
| В            | 164.2mm  | 164.2mm  | 218.6mm  |
| С            | 114.4mm  | 114.4mm  | 138.8mm  |
| D            | 145mm    | 145mm    | 179mm    |
| Product Code | V1090201 | V1090301 | V1090401 |




#### W100 BS Table D Flange (Undrilled)

This allows the removal of complete pipe sections for ease of maintenance. It can also be used when connected to another BS Table D Flange.

The BS Table D Flanges should be clamped together with a nitrile gasket and  $4\,\mathrm{x}$  M20 bolts.

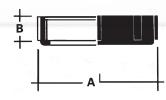
| Cat. No.     | W101T.D  | W102T.D  | W103T.D  | W104T.D  |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 30mm     | 30mm     | 41mm     | 41mm     |
| В            | 133mm    | 152mm    | 187mm    | 216mm    |
| С            | 16mm     | 16mm     | 19mm     | 19mm     |
| gms          | 300      | 409      | 1500     | 2087     |
| Product Code | V1010101 | V1010201 | V1010301 | V1010401 |



#### W22 Olive

The new flexible no heat Vulcathene olive locates into a groove, cut into the pipe using the cutting tool W26, by means of a 'tongue' around its inner surface. This simple, yet highly effective olive is then forced into the space between the pipe and the fitting as the nut is tightened thus forming a highly effective liquid tight seal.

| Cat. No.     | W221     | W222     | W223     | W224     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| gms          | 2        | 3        | 51       | 91       |
| Product Code | V1022111 | V1022211 | V1022311 | V1022411 |




#### W23 Nut

Vulcathene nuts are used in conjunction with the Vulcathene olive to make a watertight joint. Every Vulcathene Mechanical fitting is supplied complete with Vulcathene nuts. We recommend that Vulcathene lubricant is smeared on the thread to facilitate tightening of the joint using the purpose-designed W36 spanner.

| Cat. No.     | W231     | W232     | W233     | W234     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 67mm     | 83mm     | 134mm    | 162mm    |
| В            | 21mm     | 25mm     | 33mm     | 35mm     |
| gms          | 58       | 100      | 250      | 520      |
| Product Code | V1023101 | V1023201 | V1023301 | V1023401 |





#### W24 Blanking-Off Plug

Made to suit all pipe sizes, blanking-off plugs should be used where a rodding point is required in the waste pipe run and also for blanking off inlets of a W612 Dilution Recovery Trap. With its own tapered sealing surface, it replaces the olive, and is held into the fitting by the nut.

| Cat. No.     | W241     | W242     | W243     | W244     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| gms          | 38       | 64       | 109      | 196      |
| Product Code | V1024101 | V1024201 | V1024301 | V1024401 |



#### **W26 Groove Cutting Tool**

Vulcathene grooving tools enable a groove, of the exact depth and width, to be cut in the correct location from the end of the pipe where the mechanical olive is then located.

| Cat. No.     | W261     | W262     | W263     | W264     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| gms          | 100      | 146      | 368      | 719      |
| Product Code | V1026101 | V1026201 | V1026301 | V1026401 |





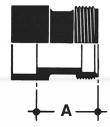
38/51mm

76/102mm

#### W36 Spanner

This moulded polycarbonate spanner is made specifically for use with the Vulcathene Mechanical range and should always be used to tighten the Vulcathene nuts as it will not distort or damage the nuts in the process of achieving a secure joint.

| Cat. No.     | W361     | W362     | W363     | W364     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| gms          | 81       | 110      | 199      | 269      |
| Product Code | V1036101 | V1036201 | V1036301 | V1036401 |

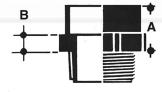



#### C130 Half Coupler

Used to convert 38mm Polyfusion pipe to 38mm Mechanical pipe, the threaded end can be screwed to a W271  $1^3$ /4" pipe coupler to make a mechanical joint.

| Cat. No.     | C130     |  |
|--------------|----------|--|
| Nom. Size    | 38mm     |  |
| A            | 45mm     |  |
| gms          | 40       |  |
| Product Code | V5130101 |  |






#### P758 BSP Coupler

Used to convert 38mm Polyfusion pipe to Mechanical (or Enfusion) pipe, the BSP threaded end can be screwed to W15 or L15 series female couplers.

| Cat. No.     | P758     | /   |
|--------------|----------|-----|
| Nom. Size    | 38mm     |     |
| A            | 35mm     |     |
| В            | 41mm     |     |
| gms          | 36       |     |
| Product Code | V5758101 | / / |





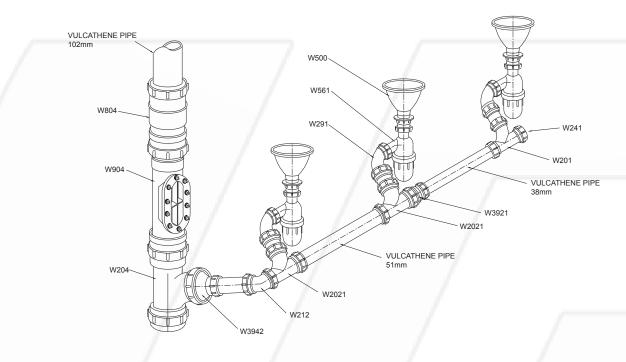
#### 200 Hand Tool

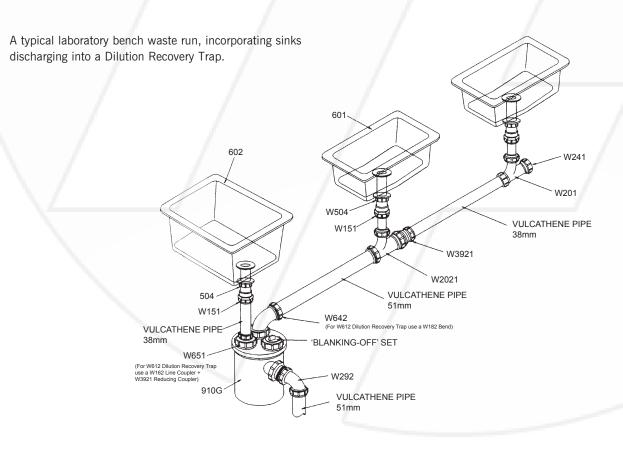
Used for making socket fusion joints in 38mm, the tool can be heated to the required temperature using a gas torch.

(See polyfusion jointing information on Page 51).

|      | Product Code | / |
|------|--------------|---|
| 38mm | V440010      |   |




#### Pipe Cutters


|                             | Product Code |  |
|-----------------------------|--------------|--|
| 16-63mm pipe cutter         | FT800001     |  |
| 50-125mm pipe cutter        | FT800003     |  |
| 16-63mm spare cutter wheel  | FT800002     |  |
| 50-125mm spare cutter wheel | FT800004     |  |



#### **Mechanical Drainage Design**

A typical laboratory bench waste run, incorporating drip cups discharging into bottle traps and then into a Vulcathene stack.





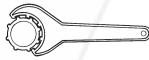
#### **Making the Mechanical Joint**

The Mechanical joint employs a moulded tongued thermo plastic elastomer olive which is 'keyed' to the pipe by a patented technique and takes, on average, only about half a minute to make. Once the nut is tightened and the joint is made, the pipe is locked into the fitting to give a lasting leak-free connection. The joint is demountable for maintenance or system re-design purposes, and can be made and re-made.

**Note:** always tighten the nuts as work progresses. They should not be left until the job is completed. When installing any chemical waste drainage system it is imperative in order to ensure that joint integrity can be maintained, in line with the design criteria of the system, Vulcathene grooving tools and spanners must be used to make the joint.

While the general principles of waste drainage still apply when jointing Vulcathene chemical waste drainage, considerable care must be taken in making the joint. When tightening a fitting made from Polypropylene the two 'dry' surfaces of the material tend to 'bind' against each other preventing the nuts on the joints being fully tightened.

To overcome this, either Vulcathene lubricating grease or petroleum jelly should be smeared onto the threads of the joint. This will enable the nut to be tightened to its full thread capacity.


#### **W36 Series Spanners**

The W36 spanner, moulded from a polycarbonate, is made specifically for use with the Vulcathene Mechanical range and should always be used to tighten the Vulcathene joint as it will not distort, damage or scar the nut. A standard spanner or strap wrench should not be used as the 'squeezing' action can distort the fitting and the pressure applied is only effectively in contact with two of the lugs on the nut.

The W36 spanner has been designed with a profile that matches the moulded shape of the nut on the Vulcathene joint. The toe of the spanner should be located over a convenient lug on the nut and the action of tightening,

or loosening, the nut will ensure that the spanner maintains full contact grip evenly against 5 of the nut lugs.





It is also important to remember that the nut should not be overtightened and the leverage length' of the hands will provide sufficient force to tighten the nut and produce full joint integrity. At no time should the 'handle' of the spanner be lengthened, with a pipe or other tool, to increase the leverage when tightening a nut.

We suggest that two spanners are used when tightening the nuts. One should be placed on the nut on the opposing end of the joint to counter the force applied, enabling the nuts to be tightened to their fullest capacity.

#### **W26 Series Groove Cutting Tools**

The major factor in the joint integrity of the Vulcathene Mechanical waste drainage system is the 'tongued olive'. Therefore, we have designed a tool which very simply enables a groove, of the exact depth and width, to be cut in the correct location from the end of the pipe.

The groove cutting tools for this purpose are specific to each size of pipe. While each of the cutting tools for 76 and 102mm pipe is provided with two handles, and requires the pipe to be held in a vice, the cutting tool for 38 and 51mm pipe, can be used by holding the pipe with one hand and operating the grooving tool with the other.





When securing the pipe in a vice, care must be taken to ensure that the pressure applied is sufficient to hold the pipe without distorting it. On all the groove cutting tools the depth of the grooving blade can be changed from full to half depth and we recommend that the first few turns should be made with the blade setting at half depth.

#### 38mm (11/2") and 51mm (2")







76mm (3") and 102mm (4")







Half depth

Full depth

Retracted

With the groove cutting tool for the large size pipes, it is important to grip the handles with both hands to ensure that it remains square to the end of the pipe, and cuts a uniform groove round the pipe.

**Note:** Groove cutting tools need to be in good condition in order to cut grooves of a constant and correct depth.

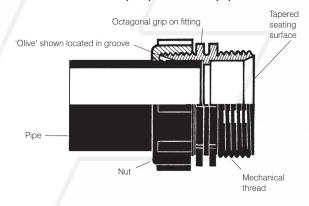
#### **Making the Joint**

Clamp the pipe in a pipe vice. Cut to length using a rotary plastic pipe cutter as shown. This is favoured over the use of a hacksaw as the finish is clean (no loose swarf or burr on the pipe) and, more importantly, it is square and does not require further preparation. If a saw is used, it is essential that all burrs and loose material are removed.

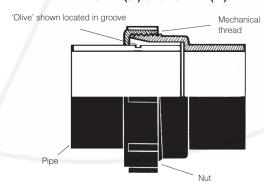


To achieve full joint integrity it is necessary that a groove, into which the 'tongued' olive locates is cut around the pipe with the special grooving tool. Insert the pipe into the grooving tool to its total depth and adjust the depth cutting blade to half depth and revolve the cutting tool anti-clockwise around the pipe. Then adjust to full depth, again revolving it anti-clockwise. When completed retract the blade and remove the tool making sure that any swarf created by the grooving action is removed. Never try to cut the groove with the blade at full cut first time.

No-heat olives (yellow colour) have been developed for Vulcathene making joint assembly even quicker. To assemble the joint place the nut onto the pipe and slide the new no-heat olives wide end first into place, with the tongue locating into the groove in the pipe.


Note: Use Vulcathene lubricant on 76mm & 102mm Olives to aid installation.

Having made sure that the fitting is clean, smear Vulcathene Lubricant or petroleum jelly onto the threads of the fitting.



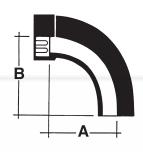

Loosely assemble the joint and proceed to hand tighten the knurled nut. Using two Vulcathene spanners further tighten the joint. The nut must be tightened to its full thread capacity.

#### 38mm (11/2") and 51mm (2")



#### 76mm (3") and 102mm (4")



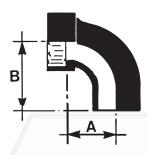



#### L28 Single Socket Long Sweep Bend

Available in sizes from 38mm to 152mm, this fitting has an Enfusion socket at one end and a plain spigot at the other.

| Cat. No.     | L281     | L282     | L283     | L284     | L286     |
|--------------|----------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    | 152mm    |
| A            | 70mm     | 83mm     | 103mm    | 125mm    | 167mm    |
| В            | 117mm    | 117mm    | 171mm    | 203mm    | 247mm    |
| gms          | 90       | 170      | 350      | 510      | 2000     |
| Product Code | V6028101 | V6028201 | V6028301 | V6028401 | V6028601 |



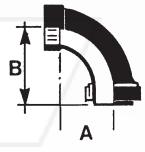



#### L29 Single Socket Short Sweep Bend

Available in  $38 \mathrm{mm}$  and  $51 \mathrm{mm}$  sizes this fitting has an Enfusion socket at one end and a plain spigot at the other.

| Cat. No.     | L291     | L292     |  |
|--------------|----------|----------|--|
| Nom. Size    | 38mm     | 51mm     |  |
| A            | 43mm     | 64mm     |  |
| В            | 75mm     | 97mm     |  |
| gms          | 90       | 120      |  |
| Product Code | V6029101 | V6029201 |  |



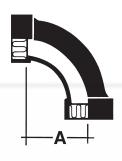



#### L291A Loose Nut/Socket Short Sweep Bend

Available in 38mm size only, this fitting has a captive nut for connection to Vulcathene threaded units at one end and an Enfusion socket at the other.

| Cat. No.     | L291A    |   |
|--------------|----------|---|
| Nom. Size    | 38mm     |   |
| A            | 44mm     |   |
| В            | 76mm     |   |
| gms          | 90       |   |
| Product Code | V6029111 | 7 |






#### L17 Double Socket Long Sweep Bend

Available in sizes from 38mm to  $152 \mathrm{mm}$ , this fitting has an Enfusion socket at both ends.

| Cat. No.     | L171     | L172     | L173     | L174     | L176     |
|--------------|----------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    | 152mm    |
| A            | 70mm     | 83mm     | 103mm    | 125mm    | 198mm    |
| gms          | 101      | 170      | 390      | 530      | 1760     |
| Product Code | V6017101 | V6017201 | V6017301 | V6017401 | V6017601 |





#### L18 Double Socket Short Sweep Bend

Available in 38mm and 51mm sizes, this fitting has Enfusion sockets at both ends.

| Cat. No.     | L181     | L182     |
|--------------|----------|----------|
| Nom. Size    | 38mm     | 51mm     |
| A            | 43mm     | 64mm     |
| gms          | 115      | 172      |
| Product Code | V6018101 | V6018201 |



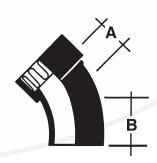


#### L19 45° Double Socket Slow Bend

Five standard sizes cover the 38mm to  $152 \mathrm{mm}$  range, with an Enfusion socket at each end.

| Cat. No.     | L191     | L192     | L193     | L194     | L196     |
|--------------|----------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    | 152mm    |
| A            | 19mm     | 38mm     | 51mm     | 51mm     | 43mm     |
| gms          | 80       | 120      | 300      | 520      | 1500     |
| Product Code | V6019101 | V6019201 | V6019301 | V6019401 | V6019601 |



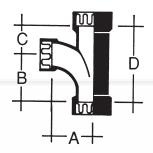



#### L21 45° Single Socket Slow Bend

Available in five sizes to suit standard 38mm to 152mm pipe the fitting has an Enfusion socket at one end and a plain spigot at the other end.

| Cat. No.     | L211     | L212     | L213     | L214     | L216     |
|--------------|----------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    | 152mm    |
| A            | 19mm     | 38mm     | 51mm     | 51mm     | 43mm     |
| В            | 38mm     | 76mm     | 95mm     | 100mm    | 114mm    |
| gms          | 80       | 130      | 260      | 450      | 1450     |
| Product Code | V6021101 | V6021201 | V6021301 | V6021401 | V6021601 |





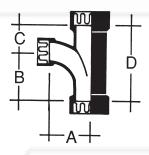

#### L20 921/2° Equal Sweep Tee

An equal three branch fitting, the sweep tee is available in four sizes from 38mm to 102mm and has an Enfusion socket on each branch.

| Cat. No.     | L201     | L202     | L203     | L204     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 57mm     | 59mm     | 79mm     | 98mm     |
| В            | 70mm     | 59mm     | 78mm     | 98mm     |
| С            | 51mm     | 35mm     | 46mm     | 57mm     |
| D            | 121mm    | 94mm     | 124mm    | 156mm    |
| gms          | 103      | 220      | 560      | 1300     |
| Product Code | V6020101 | V6020201 | V6020301 | V6020401 |





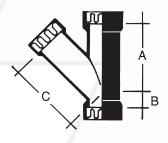

#### L20 921/2° Reducing Sweep Tee

When ordering, the first two dimensions on the chart below relate to the straight through bore, and the third to the branch diameter.

| Cat. No.     | L2021      | L2042        |   |
|--------------|------------|--------------|---|
| Nom. Size    | 51x51x38mm | 102x102x51mm |   |
| A            | 57mm       | 100mm        |   |
| В            | 70mm       | 52mm         | 7 |
| С            | 51mm       | 28mm         |   |
| D            | 121mm      | 81mm         |   |
| gms          | 140        | 550          |   |
| Product Code | V6020211   | V6020421     |   |







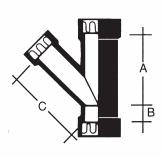

#### L37 45° Single Wye

Covering the sizes from 38mm to 152mm all branches have an Enfusion socket.

| Cat. No.     | L371     | L372     | L373     | L374     | L376     |
|--------------|----------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    | 152mm    |
| Α            | 83mm     | 92mm     | 127mm    | 212mm    | 214mm    |
| В            | 29mm     | 36mm     | 41mm     | 46mm     | 44mm     |
| С            | 83mm     | 92mm     | 127mm    | 187mm    | 214mm    |
| gms          | 200      | 240      | 550      | 1100     | 3630     |
| Product Code | V6037101 | V6037201 | V6037301 | V6037401 | V6037601 |





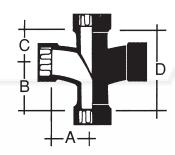

#### L37 45° Reducing Wye

For ordering the first two dimensions shown on the chart below relate to the straight through bore and the third the branch diameter. All branches have an Enfusion socket.

| L3731      | L3732      | L3742             | L3764                      |
|------------|------------|-------------------|----------------------------|
| 76x76x38mm | 76x76x51mm | 102x102x51mm      | 152x152x102mm              |
| 144mm      | 144mm      | 165mm             | 214mm                      |
| 22mm       | 22mm       | 10mm              | 44mm                       |
| 178mm      | 146mm      | 165mm             | 214mm                      |
| 700        | 520        | 814               | 2360                       |
| V6037311   | V6037321   | V6037421          | V6037641                   |
|            | V6037311   | V6037311 V6037321 | V6037311 V6037321 V6037421 |

Note: To make other sizes in reduced tees use equal tees and the appropriate reducers.





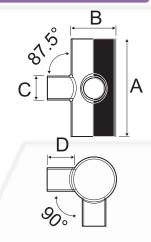

#### L35 921/2° Double Branch

An equal four branch fitting, the double branch is available in three sizes from 51mm to 102mm and has an Enfusion socket on each branch.

| Cat. No.     | L352     | L353     | L354     |
|--------------|----------|----------|----------|
| Nom. Size    | 51mm     | 76mm     | 102mm    |
| A            | 58mm     | 78mm     | 98mm     |
| В            | 59mm     | 79mm     | 98mm     |
| С            | 35mm     | 46mm     | 57mm     |
| D            | 93mm     | 124mm    | 156mm    |
| gms          | 370      | 650      | 900      |
| Product Code | V6035201 | V6035301 | V6035401 |





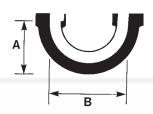

#### L942 90° Corner Branch\*

The  $90^{\circ}$  Corner branch is available in size  $102 mm\ x\ 51 mm$  with spigot ends for either Enfusion or Mechanical jointing. The 51mm branches are at  $92^1/2^\circ$  to the main bore. Additional Enfusion couplers are required for Enfusion jointing unless connecting to another Vulcathene Enfusion fitting. For 38mm branch connections use Vulcathene L3912 reducers.

\*Fabricated

| Cat. No.     | W942         |  |
|--------------|--------------|--|
| Sizes        | 102mm x 51mm |  |
| Α            | 250mm        |  |
| В            | 114.3mm      |  |
| С            | 60.3mm       |  |
| D            | 62.9mm       |  |
| gms          | 480          |  |
| Product Code | V1094201     |  |
|              |              |  |





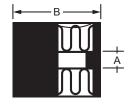

# L101 U Bend

Available in 38mm and 51mm sizes, this fitting has Enfusion sockets at both ends. A 'P' trap configuration can be made by adding an L28 single socket sweep bend.

| Cat. No.     | L1011    | L1012    |
|--------------|----------|----------|
| Nom. Size    | 38mm     | 51mm     |
| A            | 57mm     | 87mm     |
| В            | 82mm     | 125mm    |
| gms          | 150      | 200      |
| Product Code | V6010111 | V6010121 |





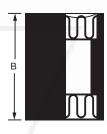

Note:  $^{1}$ P' traps in 76mm, 102mm and 152mm sizes can be made using 2 x L28 single socket bends plus 1 x L17 double socket bend.

# L16 Coupling

Produced to fit the five sizes of the Enfusion chemical waste drainage system, from 38mm to 152mm, the coupling has an internal stop which forms a smooth throughbore and ensures that the correct depth of pipe is inserted into the fitting.

| Cat. No.     | L161     | L162     | L163     | L164     | L166     |
|--------------|----------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    | 152mm    |
| A            | 6mm      | 8mm      | 11mm     | 11mm     | 13mm     |
| В            | 61mm     | 74mm     | 102mm    | 127mm    | 183mm    |
| gms          | 50       | 80       | 300      | 510      | 640      |
| Product Code | V6016101 | V6016201 | V6016301 | V6016401 | V6016601 |






### L16 (S) Slip Coupling

Enfusion slip couplers in sizes  $102 \mathrm{mm}$  and  $152 \mathrm{mm}$  can be used where a new branch connection to an existing Vulcathene stack is required.

| Cat. No.     | L164(S)  | L166(S)  |  |
|--------------|----------|----------|--|
| Nom. Size    | 102mm    | 152mm    |  |
| В            | 150mm    | 150mm    |  |
| gms          | 646      | 930      |  |
| Product Code | V6716401 | V6416601 |  |





### L39 Reducing Coupler

This range covers the requirement for changing from one pipe size to another. Designed with an Enfusion socket on one end and the other spigot end is fused into a larger Enfusion socket.

| Cat. No.     | L3912    | L3923    | L3924    |  |
|--------------|----------|----------|----------|--|
| Nom. Size    | 51x38mm  | 76x51mm  | 102x51mm |  |
| A            | 32mm     | 43mm     | 51mm     |  |
| gms          | 44       | 160      | 239      |  |
| Product Code | V6039121 | V6039231 | V6039241 |  |

| Cat. No.     | L3934    | L3946     |
|--------------|----------|-----------|
| Nom. Size    | 102x76mm | 152x102mm |
| A            | 47mm     | 64mm      |
| gms          | 214      | 620       |
| Product Code | V6039341 | V6039461  |



152mm x 38mm reducer: Use L3946 reducer + L3924 reducer + L3912 reducer

152mm x 51mm reducer: Use L3946 reducer + L3924 reducer 152mm x 76mm reducer: Use L3946 reducer + L3934 reducer





# L14 M.I to Pipe Coupler

In two sizes, 38mm and 51mm, this fitting has an Enfusion socket on one end and a male thread the other.

| Cat. No.     | L141     | L142     |  |
|--------------|----------|----------|--|
| Nom. Size    | 38mm     | 51mm     |  |
| A            | 6mm      | 6mm      |  |
| gms          | 30       | 60       |  |
| Product Code | V6014101 | V6014201 |  |



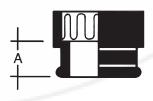


### L15 F.I to Pipe Coupler

In two sizes, 38mm and 51mm, this fitting has an Enfusion socket on one end and a female thread the other.

| Cat. No.     | L151     | L152     |
|--------------|----------|----------|
| Nom. Size    | 38mm     | 51mm     |
| A            | 8mm      | 8mm      |
| gms          | 70       | 100      |
| Product Code | V6015101 | V6015201 |



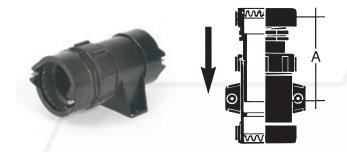



### L45 Glass Adaptor

Produced in flame retardant PP in four sizes from 38mm to 102mm, the fitting has an Enfusion socket on one end and a beaded spigot on the other for connection to nominal glass pipe dimensions DN40, DN50, DN80 & DN100.

| Cat. No.     | L451     | L452     | L453     | L454     |
|--------------|----------|----------|----------|----------|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |
| A            | 28mm     | 32mm     | 41mm     | 36mm     |
| gms          | 40       | 66       | 400      | 665      |
| Product Code | V6045104 | V6045204 | V6045304 | V6045404 |






### L801 Thermal Stress Relief Unit

Designed for use with 38mm diameter pipe, the L801 can be installed in either vertical or horizontal pipework. When installed it is important to ensure that the end with the moulded fixing clip is the outflow end of the fitting.

When installing a stress relief unit, the tail end pipe should be pushed fully 'home' and its position marked. It should then be withdrawn 38mm.

| Cat. No.     | L801     |   |
|--------------|----------|---|
| Nom. Size    | 38mm     |   |
| A min        | 70mm     | / |
| A max        | 108mm    |   |
| Product Code | V6080101 | 7 |



### L802 Thermal Stress Relief Unit

Designed for use with 51mm diameter pipe, the L802 can be installed in either vertical or horizontal pipework. When installed it is important to ensure that the end which forms the collar is the outflow end of the fitting.

The unit must be anchored with a metal clamp which should be located round the body of the stress relief unit, just below the ridge round the top of the collar. This allows the pipe inserted into the collar to expand and contract.

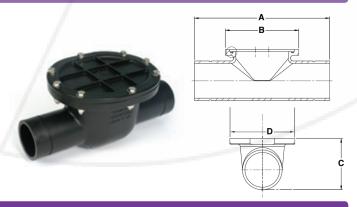
| Cat. No.     | L802     |  |
|--------------|----------|--|
| Nom. Size    | 51mm     |  |
| A min        | 149mm    |  |
| A max        | 203mm    |  |
| В            | 73mm     |  |
| gms          | 750      |  |
| Product Code | V6080201 |  |



### L803/4/6 Thermal Stress Relief Unit

Designed for use on 76mm, 102mm and 152mm diameter pipes this unit can be installed in either vertical or horizontal pipework. When installed it is important to ensure that the spigot end is on the outflow end of

the fitting. The unit must be anchored with a metal clamp which should be located on top of the moulded locators, moulded round the body of the stress relief unit, which then allows the pipe inserted into the collar to expand and contract. **Note:** The body of the SRU incorporates an '0' ring seal.

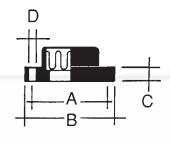

| Cat. No.     | L803     | L804     | L806     |
|--------------|----------|----------|----------|
| Nom. Size    | 76mm     | 102mm    |          |
| A            | 198mm    | 215mm    | 198mm    |
| В            | 117.2mm  | 144.5mm  | 200.5mm  |
| С            | 110mm    | 141mm    | 196mm    |
| D            | 101.7mm  | 129mm    | 184.5mm  |
| E            | 89.7mm   | 115mm    | 169.5mm  |
| gms          | 575      | 900      |          |
| Product Code | V1080301 | V1080401 | V6080601 |



# L902/3/4 Access Pipe

Correctly sited at critical points in the pipeline, access pipes simplify clearing blockages, inspection and thorough cleansing of the installation. With a clear flow bore, the L90 series has a bolt on cover and spigot ends for fusion to enfusion sockets.

| Cat. No.     | L902     | L903     | L904     |  |
|--------------|----------|----------|----------|--|
| Nom. Size    | 51mm     | 76mm     | 102mm    |  |
| A            | 260mm    | 302mm    | 390mm    |  |
| В            | 164.2mm  | 164.2mm  | 218.6mm  |  |
| С            | 114.4mm  | 114.4mm  | 138.8mm  |  |
| D            | 145mm    | 145mm    | 179mm    |  |
| Product Code | V1090201 | V1090301 | V1090401 |  |




# L40 Flange

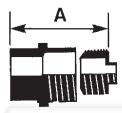
To fit pipe sizes from 38mm to 152mm, the flange is supplied undrilled. Flanges should be clamped together with a nitrile gasket and 4 M20 bolts.

| Cat. No.                 | L401     | L402     | L403     | L404     | L406     |
|--------------------------|----------|----------|----------|----------|----------|
| Nom. Size                | 38mm     | 51mm     | 76mm     | 102mm    | 152mm    |
| A                        | 98mm     | 114mm    | 146mm    | 178mm    | 235mm    |
| В                        | 127mm    | 150mm    | 189mm    | 228mm    | 278mm    |
| С                        | 16mm     | 18mm     | 23mm     | 28mm     | 25mm     |
| D                        | 14mm     | 17mm     | 17mm     | 17mm     | 17mm     |
| gms                      | 280      | 310      | 600      | 780      | 1768     |
| Product Code (Undrilled) | V6040101 | V6040201 | V6040301 | V6040401 | V6040601 |





# L24 Cleanout Plug


A simple method for draining or rodding a blocked section, the Cleanout is available to suit pipe sizes from 38mm to 102mm. The fitting comprises of a spigot which can be fused into an Enfusion socket and a threaded plug.

The A dimension shows the disassemble length with a clearance allowance of 13mm. Wrap PTFE tape around the thread of the plug to make a seal.

| Cat. No.     | L241     | L242     | L243     | L244     |  |
|--------------|----------|----------|----------|----------|--|
| Nom. Size    | 38mm     | 51mm     | 76mm     | 102mm    |  |
| A            | 160mm    | 185mm    | 185mm    | 210mm    |  |
| gms          | 140      | 150      | 280      | 480      |  |
| Product Code | V6024101 | V6024201 | V6024301 | V6024401 |  |
|              |          |          |          |          |  |







# Vulcathene Enfusion Fittings

# L2610 Link Cable

Link cable leads in 1m lengths for multiple jointing.

Product Code C53EN003



# L261 Clamp

Available in six sizes for 38mm to 152mm fittings, these stainless steel clamps should be fitted over the hubs of the Enfusion sockets and tightened before electrofusion welding.

|        |       | Product Code |
|--------|-------|--------------|
| Sizes: | 38mm  | V6261014     |
|        | 51mm  | V6261024     |
|        | 76mm  | V6261034     |
|        | 102mm | V6261044     |
| 7      | 152mm | V6261064     |



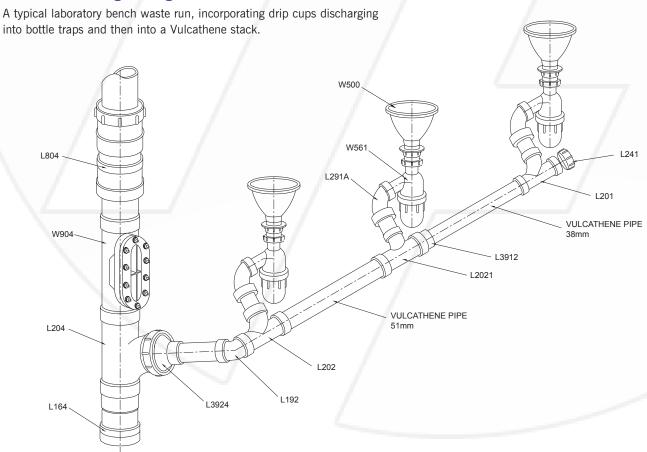
# L2601 Enfusion Hand-held Unit

(See specification details on page 44)

Product Code V6ECU001



### Pipe Scraper


Pipe should be thoroughly scraped over an area equal to socket depth plus 50% using a pipe scraper. Replacement blades (2 per packet) are supplied separately.



| Product Code | C53MJ001 | Pipe Scraper       |  |
|--------------|----------|--------------------|--|
|              | C53MJ002 | Replacement Blades |  |

# Vulcathene Chemical Waste Drainage System

# **Enfusion Drainage Design**



# **Making the Enfusion Joint**

### The Enfusion Joint

Enfusion fittings are manufactured with an integral resistance wire. The wire is electrically heated by means of a microprocessor controlled Enfusion Control Unit. This results in fusion and bonding of the pipe to the fitting. Jointing is achieved within minutes.



The Enfusion joint achieves the optimum level of performance where it matters most – at the joint interface. **Controlled fit, controlled temperature and controlled time.** All of this is achieved by means of the Enfusion Control Unit, which ensures proper electrical connections, joint timing and input/output current levels. The combination of these features provides both simplicity of jointing and perfect control.



The integral resistance wire is manufactured from a heavy gauge nickel/chrome alloy which allows for uniform electrical resistance and heating, while offering excellent chemical resistance.

The overall result is a state-of-the-art jointing method which offers simplicity and quickness.

### Making the Enfusion Joint

Before making the Enfusion Joint, it is important to check that the power source is providing 104 to 126 volts at 45 to 65 cycles with 16amp capacity. The Enfusion controller provides for reasonable and normal power variation, but generators in particular should be checked to ensure that rated output is being provided.

### **Preparation**

- 1. Cut the pipe square and remove all burrs and loose material.

  Use a tube cutter with a wheel designed for use on plastic pipe. If a saw and mitre box combination is used, make certain to remove all burrs. DO NOT CHAMFER THE CUT.
- Using a pipe scraper, scrape the end of the pipe equivalent to the depth of the socket plus 50%.
   Removal of the slick or 'skin' on the surface of the pipe is imperative to obtain a good fusion joint. Once prepared DO NOT handle this area or allow it to get dirty.



- 3. Insert the pipe all the way to the stop at the bottom of the socket.
- 4. Decide whether the joint will be welded singly or in series. If multiple joints are to be made, refer to the table on the next page which indicates the maximum number of joints relative to the pipe size.
- Loosely fit the appropriate sized clamp(s) over the hub(s)
  of the socket(s) to be joined and position flush with the
  socket opening. It is imperative to ensure correct positioning
  of clamps.
- 6. Tighten the clamp(s) around the hub(s) of the socket(s). It is important that the clamp(s) is/are tightened sufficiently to stop pipe rotation in the socket. Do not overtighten.
- Before using the Enfusion Control Unit ALL cables MUST be unwound from the protective frame or removed from the Pelicase if using the hand-held unit.
- 8. Turn the Enfusion Control Unit on and it will self-test. *Ensure the unit displays a copyright message.*



9. Follow the instruction on the display to 'Connect Output Lead'.

If using a single joint, connect the output leads to one joint. If multiple joints, utilise the link leads as required.

**Note:** Terminal pin extension adaptors are available where access to the fitting terminal pin is restricted.

10. **Hand-held Unit:** Press START button to begin welding. *The Enfusion Control Unit will display the temperature and the welding time.* 

**Old style Unit:** Use select button & select 3" or above for all sizes; then press START button to begin welding.

11. When completed, the Enfusion Control Unit will emit an audible alarm and display the message 'Disconnect Output Lead'.

During this period the Enfusion Control Unit will count down to zero.

- 12. Wait 30 seconds to allow the joints to cool, before gently disconnecting leads from the joints.

  The Enfusion Control Unit will now reset, ready for the next operation.
- 13. Leave the joint undisturbed for at least 5 minutes before removing clamp(s).

### **Troubleshooting**

If the Enfusion Control Unit stops before joint completion, the unit will send an audible alarm and the fault display will show... Interrupted weld, or output fault, or connection fault.

If you discover the interruption in less than 2 minutes, correct the fault displayed and press the yellow 'SELECT' button to reset. The remaining weld time will be displayed. Press the green 'START' button to restart the weld.

If a joint has been at fault for more than 2 minutes the joint will have cooled. The full cycle therefore should be run again.

Prior to re-fusing, 38mm to 76mm fittings should cool for 5 minutes and 102mm to 152mm fittings should cool for 7 minutes.

The Enfusion Control Unit should be re-set by shutting it off and the following from Step 8 onwards.

**Note:** When working in very cold conditions try to screen the joint from direct contact with the wind. Protecting the joint with a 'blanket' will also help prevent excessive loss of heat due to a chill wind.

### **Making Multiple Enfusion Joints**

The chart below indicates the number of joints which can be fused at any one time utilising additional link cables in series.

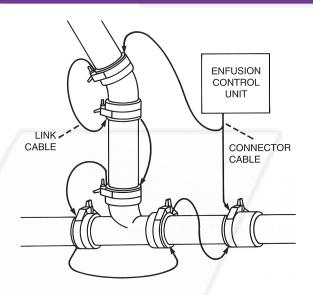
**Note:** If multiple jointing fittings of different sizes, the total joint internal diameter must not exceed 306mm.

| Multiple Joint Fusion Ch | nart |      |      |       |       |
|--------------------------|------|------|------|-------|-------|
| Pipe size                | 38mm | 51mm | 76mm | 102mm | 152mm |
| Maximum number of joints | 8    | 6    | 4    | 3     | 2     |

# Note: Important software update September 2015

Following changes to the Enfusion range of products in September 2015, all sizes of fittings from 38mm to 152mm are now welded at the same fusion time.

### Hand-held Unit:


If your Hand-held unit has not been reprogrammed you should use the 3" to 12" size range selection for all sizes, including 1.5" & 2" (38mm & 51mm). For example, 1.5" (38mm) fittings should use the 3" to 12" selection.



Old style Enfusion Unit: (yellow box/blue cage): Old style Enfusion units cannot be reprogrammed. Until such time that a newer machine can be purchased (or hired) you should select the 3" to 12" size range selection for all sizes, including 1.5" & 2" (38mm & 51mm).

The weld time for 3" to 12" sizes is the same.





Typical Multiple Jointing Configuration

### Enfusion Unit (Hand-held) Specification

| Enfusion automatic        |
|---------------------------|
| English                   |
| -20°C to +50°C            |
| 110 V ac                  |
| 88 V to 149 V (-20% +35%) |
| 11 A                      |
| 50 Hz                     |
| 40 Hz to 70 Hz            |
| 100 VA to 1250 VA         |
| 18 A ac true rms          |
| 3 V to 50 V ac true rem   |
| 50 W to 900 W             |
| +/- 1.5%                  |
| C 150 : N 120 : H 110     |
| 0.72                      |
| 15kg                      |
| 40cm x 32cm x 16cm        |
| IP65                      |
| 1m                        |
| 10m                       |
| 2m                        |
|                           |



Enfusion Control Units contain sophisticated electronic components and should therefore be handled with care. Do not tamper with them and should they, for any reason, malfunction, please call our local Vulcathene distributor or representative.

### **Installation Advice**

# Waste Pipe Fall

Horizontal waste runs should be installed to provide a natural 'fall' to the Vulcathene stack. The fall is dictated to some extent by the installation.  $2^{\circ}$  to  $3^{\circ}$  is an ideal 'fall', but it should never be less than  $1^{\circ}$ .

**Note:** A waste system flows best at a fall of  $2^{\circ}$  to  $3^{\circ}$ , transporting any solids which may be flushed away, so the potential for blockages is reduced. Also, as chemicals will only be 'flowing' through the system, the possibility of long term chemical damage will be eliminated.

### Typical Pipework Falls for Vulcathene Pipes

| Pipe<br>length | Fall in<br>pipework<br>at 1° | Fall in<br>pipework<br>at 2° | Fall in pipework at 2.5° | Fall in<br>pipework<br>at 3° |
|----------------|------------------------------|------------------------------|--------------------------|------------------------------|
| Metres         |                              | Millim                       | netres                   |                              |
| 1.0            | 17.46                        | 34.93                        | 43.67                    | 52.24                        |
| 1.5            | 26.19                        | 52.39                        | 65.50                    | 78.36                        |
| 2.0            | 34.91                        | 69.85                        | 87.33                    | 104.48                       |
| 2.5            | 43.64                        | 87.31                        | 109.17                   | 130.60                       |
| 3.0            | 52.37                        | 104.78                       | 131.00                   | 156.72                       |
| 3.5            | 61.10                        | 122.24                       | 152.83                   | 182.85                       |
| 4.0            | 69.83                        | 139.70                       | 174.67                   | 208.97                       |
| 4.5            | 78.56                        | 157.16                       | 196.50                   | 235.09                       |
| 5.0            | 87.29                        | 174.63                       | 218.34                   | 261.21                       |
| 5.5            | 96.01                        | 192.09                       | 240.17                   | 287.33                       |
| 6.0            | 104.74                       | 209.55                       | 262.00                   | 313.45                       |
| 6.5            | 113.47                       | 227.01                       | 283.84                   | 339.57                       |
| 7.0            | 122.20                       | 244.48                       | 305.67                   | 365.69                       |
| 7.5            | 130.93                       | 261.94                       | 327.50                   | 391.81                       |
| 8.0            | 139.66                       | 279.40                       | 349.34                   | 417.93                       |
| 8.5            | 148.38                       | 296.86                       | 371.17                   | 444.05                       |
| 9.0            | 157.11                       | 314.33                       | 393.00                   | 470.17                       |
| 9.5            | 165.84                       | 331.79                       | 414.84                   | 496.29                       |
| 10.0           | 174.57                       | 349.25                       | 436.67                   | 522.42                       |
| 10.5           | 183.30                       | 366.71                       | 458.50                   | 548.54                       |
| 11.0           | 192.03                       | 384.18                       | 480.34                   | 574.66                       |
| 11.5           | 200.76                       | 401.64                       | 502.17                   | 600.78                       |
| 12.0           | 209.48                       | 419.10                       | 524.00                   | 626.90                       |

### **Supporting Vulcathene Pipes**

Vulcathene pipe does not typically require continuous support when used for horizontal runs at room temperatures. Vulcathene pipe clips should be fixed at the following recommended centres:

| Nominal I.D.              | 38mm  | 51mm  | 76mm  | 102mm | 152mm |
|---------------------------|-------|-------|-------|-------|-------|
| Horizontal Fixing Centres | 1.22m | 1.37m | 1.52m | 1.83m | 1.83m |
| Vertical Fixing Centres   | 1.5m  | 1.5m  | 1.5m  | 1.5m  | 1.5m  |

Vulcathene pipe clips are snap-on and retain the pipe securely whilst still allowing lateral movement of the pipe caused by fluctuations in thermal conditions.

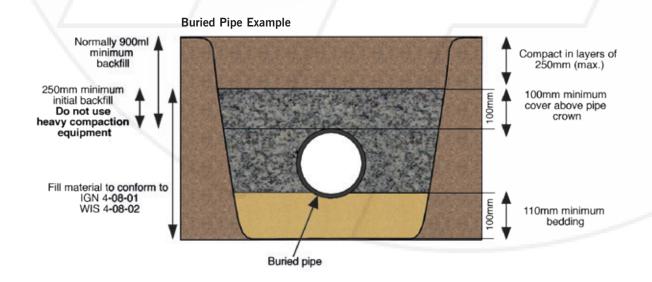
**Note:** (i) When 76mm or 102mm pipe is installed in vertical runs of some length, strain may be caused by thermal movement. In such conditions metal straps should be used to retain the pipe.

- (ii) Horizontal pipe runs, where sustained temperatures in excess of 40°C (104°F) are expected, should have continuous support using Vulcathene galvanised support channel.
- (iii) Where Vulcathene pipework is to be suspended, metal hangers are recommended.

### **Buried Pipes**

Generally, trenches should not be less than 1m deep. The trench should be straight sided and as narrow as possible to allow proper consolidation. The trench bottom should be level and free from rock, debris and sharp objects.

A 100mm deep bed of pea gravel should be laid in the bottom of the trench and backfilling, with similar material, should continue until a 100mm layer over the pipe is achieved.


Pipes may be jointed in the trench but if joined above ground should be allowed to cool sufficiently.

### **Reducing Pipe Sizes**

Apart from the 51mm x 38mm fitting which is produced as a one piece moulding, all reducing sweep tees in the Mechanical range are made by adding a W39 series reducing coupler to the branch of a W20 series equal sweep tee. Enfusion sweep tees are one piece moulded items.

### Thermal Movement and Vulcathene Pipework

To overcome the problem of expansion and contraction from changing temperatures, Vulcathene Stress Relief Units (SRUs) eliminate the stresses and strains caused by thermal movement.



When installing an SRU, care should be taken to ensure an accurate Linear 'thrust and pull' movement. Any pipe clip used should not grip the pipe tightly, but should allow the pipe to slide freely without any tendency to buckle. The housing of the SRU should always be firmly anchored to allow the sliding member to accept all movement.

Vulcathene SRUs move very easily at about 5psi, the total movement, for all sizes, being approximately  $\pm$  25mm (1"). The co-efficient of expansion for Vulcathene plumbing is 1.4mm per metre per 10°C.

On Vulcathene stacks, an SRU should be installed at every floor level where there is a stack connection. If there is no stack connection one SRU should be installed every two floors.

SRUs can be installed on horizontal pipes where there are insufficient changes in direction to accommodate thermal movement, eg. on long runs or where hot water is being conveyed.

### **Installing Vulcathene Thermal Stress Relief Units**

All Vulcathene thermal SRUs are directional to the flow of the liquid. On 38mm and 51mm SRUs the tail end pipe should be pushed fully home and its position marked. It should then be withdrawn 38mm.

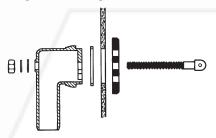
The 76mm, 102mm & 152mm are spigot ended for either mechanical or electrofusion jointing and have an open chamber fitted with a dust cap. The dust cap is prised off and slid up the pipe; the pipe is chamfered, lubricated and then slid into the chamber of the SRU until it hits the stop. The pipe should then be marked to show the limit of travel, then withdrawn approx. 25-38mm. The dust cap is then firmly replaced.

Note: 76, 102 + 152mm SRU's have built-in O-Ring seals.

The body must be firmly held still to allow the SRU to function properly. SRUs should be anchored with a metal clamp except the 38mm which has a moulded fixing clip. Multiple fix points may be required where necessary.

### **System Testing**

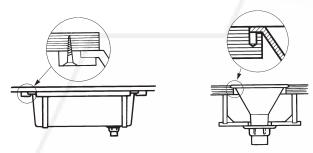
The system should be inspected for any possible leaks in accordance with BS EN 12056. Air should be pumped into the system through a branch of a tee piece until a pressure equal to 38mm water gauge is achieved. The inlet valve should then be closed and the system should maintain the pressure for a minimum of three minutes.


### **System Maintenance**

The W561 and W571 anti-siphon bottle traps and the W681 anti-siphon dilution recovery traps have sumps that can be removed for cleaning by unscrewing. The chamber of the W691 anti-siphon dilution recovery trap is removed by unscrewing the flange assembly.

The W612 dilution recovery trap is cleaned by removing the dip tubes and carefully flushing the interior of the dilution chamber. The new 910G is supplied with a removable lid & gasket seal, both held in place by a stainless steel clamp which can be easily removed for access & maintenance. The W90/L90 series access pipes should be fitted into the pipework system as required to provide sufficient and suitable access for testing and maintenance.

### Installing Sinks, Drip Cups and Waste Assemblies


When 504 wastes are used with a plastic or thin walled vessel a Butyl Rubber Gasket should be fitted between the backnut and underside of the sink. All sinks, drip cups and slotted waste assemblies should be bedded with a suitable sealant. eg. Dow Corning 786.



The illustration above shows a 509 overflow assembly with flexible hose to connect to the waste. The overflow bend and face-plate are set in with a suitable sealant. eg. Dow Corning 786.



The illustration above shows the slotted version of the 504 waste assembly used in conjunction with the 509 overflow assembly. The waste, overflow collar and washer are all set with a suitable sealant. eg. Dow Corning 786.



The illustrations above show the recommended method of supporting Vulcathene sinks using wooden battens screwed to the underside of the work top. Larger capacity sinks may need additional supporting metal straps in the manner shown. It is recommended that all Vulcathene Drip Cups are secured to the work top using a timber frame as illustrated above.



1. Position lower half of saddle around pipe.



2. Taking care to seat gasket in the branch outlet, bolt both halves together.



3. Use a spanner to tighten. Do not over torque!



4. Drill pipe wall.

### **Installing Clamp Saddles**

Vulcathene clamp saddles enable fast and easy connection of new branch pipes to existing Vulcathene stacks without the need for special tools or equipment:

- 1. Position lower half of saddle onto pipe.
- 2. Taking care to seat the gasket seal in the branch outlet (and the anti-rotation insert into the lower part of the saddle), bolt both halves together.
- 3. Use a spanner to tighten; do not over-torque!
- 4. Drill pipe wall.

Clamp bolts should be tightened with care. Avoid overtightening. Tighten until the upper part is well compressed on the pipe & resistance to the nut screwing has become high. **Note:** 76mm saddles are supplied with 4 x bolts; 102mm saddles with 6 x bolts

### Storage

The high impact strength of Vulcathene provides some protection against general handling damage on site. However certain precautions should be observed:

- a) The pipes should be stored on a level flat surface free from sharp stones and similar obstructions.
- b) Small pipes may be 'nested' inside larger pipes.
- The stack should be supported, or braced to prevent collapse.
- d) The pipes should not be stacked higher than:

| Pipe Size  | Max stacking height |
|------------|---------------------|
| Up to 76mm | 20 x pipe size      |
| 102mm      | 12 x pipe size      |

- e) When stored in tropical countries for prolonged periods the pipes should be temporarily covered.
- f) Pipes in the stack should not be subject to excesses of temperature variation.

While it is not considered necessary for pipes installed in the UK, where pipes are to be installed in locations likely to be permanently exposed to prolonged periods of strong sunlight, such as in tropical countries, their life may be extended by painting. For more information please contact our Technical Support Department on +44 (0)1543 272445.

### **COSHH Regulations**

Attention is drawn to the requirements of the Health and Safety at Work Act and COSHH Regulations. Durapipe UK cannot accept any responsibility for accidents arising from the misuse of its products, faulty installation and incorrect application. Copies of COSHH Regulations are available on request.

### **UniCollar® Fire Protection**

# 1. Removing the Casing and Accessories from the Box

The box contains the fixings and accessories required to install the collar. Open the box at the position clearly marked with an arrow. Remove the box of accessories. The end of the collar can now be pulled and the strip will uncoil. Ensure the soft Grafitex faces up. The collar strip has snapping perforations at 15mm centres.

Only pull out enough strip for the collar length required.



# 2. Cutting and Snapping the Strip

Identify the outside diameter of the pipe that is to have the collar applied to. On the box is a table, which gives the number of segments for each size pipe and the length of strip required. Either count the number of (15mm) segments required or measure the strip. Cut through the Grafitex at the appropriate position eg. for a 114mm OD pipe, cut at segment marked 30.

Hold the strip with a finger and thumb on each side of the cut and as close to the cut as possible, and fold in a downward direction as far as possible. Repeat this folding until the steel snaps





### 3. Fixing the Collar

The ends of the Grafitex, once cut, will be square. To make it easy to fix, cut these square ends away at a slight angle. Shape the strip to the approximate diameter of the pipe. If the pipe is small (eg. under 75mm) pay extra attention to the ends of the strip to ensure they have been shaped correctly. Push one of the prongs of a bracket through the notch at one end of the strip. Fold the strip around the pipe and push the other prong through the notch on the other end of the strip. (The bracket can be gently hammered in to position if pushing is difficult). Attach the bracket to the wall or floor as described over and shown on the box drawings. Fix the other bracket(s) as required.

Ensure the correct number of brackets are always used and the 2 ends of the strip always have a connecting bracket.







### 4. Floors

The UniCollar® achieves Fire Resistance Level (FRL) up to 4 hours with Vulcathene pipes up to 114mm diameter, bolted to soffit of floor slab (with a similar fire rating or the same of greater thickness) using the 20mm x 5mm steel anchors provided, through the holes in the brackets provided. The concrete must be in a condition that will ensure the anchors hold securely. Larger steel fixings may be used if deemed appropriate. Back fill any gap between the pipe and concrete greater than 8mm with mortar or commercial grade mortar mix. Acrylic, intumescent or silicone sealant may be applied around the pipe on the topside of the floor slab if a water seal is required. If there is a possibility of pipe movement occurring that will cause cracks in the seal between the pipe and mortar mix (if used), it may be advisable to seal the pipe with acrylic, intumescent or silicone sealant to prevent cold smoke egress. This however is not required for the fire rating to be achieved. If the gap between the pipe and slab is less than 8mm, apply a bead of acrylic, intumescent or silicone sealant approx. 8mm deep in to the gap at the soffit.

Fire Resistance (BS 476: Part 20)

Pipe Size Integrity
38mm-102mm 4 hours
\*152mm 2 hours

\*Note: 2 UniCollars® are required on 152mm size pipe.

### 5. Walls

For framed walls, use the 40mm x 10 laminating screws provided. For masonry walls, use the 20mm x 5mm steel anchors provided. The wall or floor must be in a condition that will ensure the anchors hold securely. Larger steel fixings may be used if deemed appropriate. Ensure the annular gap between the wall and pipe is minimal and seal this gap with a bead of acrylic, intumescent or silicone sealant. Attach a collar to both faces of the wall. Fire tests were conducted with 2 brackets on pipes 69mm and under. For framed walls, 3 brackets are recommended if framing studs are not available to screw in to.

Fire Resistance (BS 476: Part 20)
Pipe Size Integrity
38mm-152mm 2 hours

For details of suitability and approvals for use of UniCollar<sup>®</sup> for other pipe materials and sizes contact the Technical Support Department on +44 (0)1543 272445.

| Pipe Diameter (mm) | No. of Collars per Carton |
|--------------------|---------------------------|
| 38                 | 8                         |
| 51                 | 7                         |
| 76                 | 6                         |
| 102                | 5                         |
| 152                | 3                         |

# Connection to other Pipework

### **Vulcathene Mechanical/Enfusion**

Vulcathene Enfusion and Mechanical are fully compatible offering total versatility to the designer/installer of chemical waste drainage systems.

### **Vulcathene Polyfusion**

Vulcathene's original and first thermoplastic pipework system for chemical waste has been replaced by Vulcathene Enfusion, for installations where a welded drainage system is preferred.

# To connect Polyfusion to Mechanical

A W271 13/4" F.I. pipe coupler should be used when joining 38mm Vulcathene Mechanical pipe to 38mm Vulcathene Polyfusion pipe. The F.I. thread of a W271 can be screwed to the M.I. thread of a Polyfusion C130 38mm half coupler which is then socket fused to Polyfusion pipe.

The W271 may also be screwed to the outlet of any Vulcathene Polyfusion trap to provide a connection for 38mm Vulcathene Mechanical pipe.

Polyfusion pipe sizes 51mm-102mm should be treated as Mechanical, i.e. groove the pipe, place an olive in the groove, lubricate the fitting thread and tighten the nut.

### To connect Polyfusion to Enfusion:

Use Vulcathene BS Table D flanges. Polyfusion and Enfusion cannot be jointed together using socket or electrofusion jointing methods due to the incompatibility of the materials used.

### Other Plastic and Metal Materials

W14, W15, L14 and L15 range of pipe couplers have standard BSP parallel threads and can be screwed directly to the M.I. and F.I. ends of metal or plastic pipes.

Where a BSP connection is not possible. use Vulcathene BS Table D flanges.

### **Borosilicate Glass**

Vulcathene to glass adaptors are available from 38mm to 102mm.

### **Cast Iron**

Use Vulcathene BS Table D Flanges.

# **Stoneware**

When it is intended to insert Vulcathene pipe directly into a collar or socket of another material the following procedure should be adopted. Roughen or score the pipe end with a suitable tool - a coarse file - to provide a suitable 'key'. Pack the socket half full with rope and follow by caulking with acid-resistant cement or a proprietary brand of sealing compound until level with the bead of the collar.

### Flexible Couplers and Adaptors

Flexible couplers and adaptors can be used to connect Vulcathene to other pipe materials.



W16 Line Coupler



Line Coupler



Enfusion Flange



W100 BS Table D Flange



13/4" F.I. to Pipe Coupler



C130 Half Coupler



W14 BSP Coupler



W15 BSP Coupler



W45 Glass Adaptor



Glass Adaptor



L14 BSP Coupler



L15 **BSP** Coupler



Flexible Adaptor Coupling



DC95/DC115 Flexible Drain Couplings

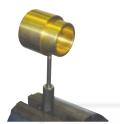
# **Connection to other Pipework**

### **Vulcathene Polyfusion**

Polyfusion, Vulcathene's first thermoplastic chemical waste system, manufactured from a low density polyethylene and jointed by socket fusion, is no longer manufactured although the Polyfusion fittings required to convert Polyfusion pipework to Vulcathene Mechanical or Vulcathene Enfusion are available.

## The Polyfusion Joint

Socket fusion jointing involves the simultaneous heating of the outer surface of the pipe end and the inside surface of the socket of the fitting until a melt state is attained on each surface.


The pipe end is then inserted into the fitting, bringing the two melt surfaces into contact, such that they are subjected to radial pressure as a consequence of an interference condition between the melt surfaces. The two melt surfaces combine to produce a homogeneous joint upon cooling.

### Making the Polyfusion Joint

- The pipe end should always be cut square and burrs removed.
   Trimming is easily carried out with a sharp knife or small plane. Out-of-square pipe ends reduce the area of amalgamation and increase the possibility of misalignment between pipe and fitting in the finished joint.
- Insert the pipe into the socket of the fitting and press fully home. Mark the tube along the outside shoulder of the socket.
- 3. Withdraw the tube from the socket. The mark will be the visual guide for the depth of pipe entry, first into the heated tool and then into the fitting socket.
- 4. The tool is heated to the required temperature using a gas torch. A thermal crayon should be used to confirm that the temperature is correct for socket fusion (approx. 240°C).
- 5. First, push the Polyfusion fitting fully onto the male side of the tool. Next, push the pipe into the female side. When the pipe is fully inserted, hold in place for a few seconds, as per the table below, (eg. 4 seconds for size 1¹/2")

| Size of Fitting | Socket Time | Pipe time | Total time |
|-----------------|-------------|-----------|------------|
| 11/2"           | 10 (6+4)    | 4         | 10         |
| 2"              | 14(9+5)     | 5         | 14         |
| 3"              | 23 (15+8)   | 8         | 23         |
| 4"              | 40 (25+15)  | 15        | 40         |
| 6"              | 50 (30+20)  | 20        | 50         |

(Time indications are in seconds)



Hand tool held in vice for heating.



Pipe & fitting offered up to heated hand tool prior to jointing.

6. Extract the pipe and socket simultaneously from the tool, and having quickly ensured that a complete all round melt has been achieved enter the pipe into the socket.

Press the pipe into the socket up to, but no further than, the visual guide previously marked on the pipe. Align tube and fitting quickly and hold in position for a further few seconds whilst the molten surfaces solidify.

# Vulcathene Polyfusion - Safety Guidance for site operation

**Note:** this method of jointing is only used for connection onto existing pipework systems, not on new installations.

Vulcathene Polyfusion tools in sizes 32 to 51mm are typically heated to the required temperature by means of a blow torch/ flame – care needs to be taken when using a naked flame.

To achieve a successful joint, the brass tool will be heated to approx. 300°C. The equipment must always be sited in a location which will prevent accidental bodily contact with the equipment. Where possible the heater plate, or fusion tooling, should be kept in a heat-proof bag between joints.

After each joint the excess material should be removed from the tool. During this operation protective gloves must be worn. Avoid skin contact with molten material at all times after removal from tool etc.

During the jointing, process fumes will be given off from the pipe and fitting. While the fumes are non-toxic they can be unpleasantly pungent and all working areas should be well ventilated.

When jointing out of doors or in well-ventilated areas, the risk from the fumes is very low

### **Converting Polyfusion to Mechanical**

 $1^{1/2}$ " Polyfusion pipe (nominal outside diameter of 44.4mm) to  $1^{1/2}$ " Mechanical pipe (nominal outside diameter of 48.3mm)

# Fittings required:

C130  $1^{1}/2$ " Half Coupler W271  $1^{3}/4$ " F.I. Pipe Coupler

### Jointing procedure (See Figure 1):

- 1. Socket fuse the C130 Half Coupler and  $1^1/2$ " Polyfusion pipe using a  $1^1/2$ " Polyfusion Hand Tool
- 2. Apply PTFE tape to the thread of the C130 Half Coupler and screw the W271  $1^{3}$ /4" F.I. Pipe Coupler to it until tight
- 3. Make a Mechanical joint from the W271 Coupler to Vulcathene Mechanical pipe

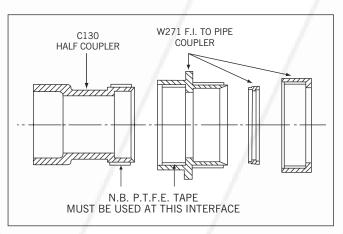



Figure 1.

### **Alternative Procedure**

### Fittings required:

P758 11/2" BSP Coupler

### Jointing procedure:

- 1. Socket fuse the P758 Coupler and  $1\frac{1}{2}$ " Polyfusion pipe using a  $1\frac{1}{2}$ " Polyfusion Hand Tool
- Apply PTFE tape to the thread of the BSP Male Coupler and screw to W151 or L151 Female BSP Adaptor until tight
- 3. Make a Mechanical or Enfusion joint from BSP Adaptor to pipe

# quotes@tipes.co.uk

### Introduction

Information in the accompanying tables show the effect on Vulcathene of a wide range of chemicals. These results have been obtained from laboratory tests and when assessing them it should be remembered that unadulterated samples were used. In a typical chemical waste drainage application, however, water and other innocuous fluids would be discharged into the system to have a dilutionary effect on any noxious material that may be present.

If in any doubt about the action of any chemicals on Vulcathene or there is the possibility that Vulcathene is to be used in situations where specialised or unusual chemicals are involved, please contact our Technical Services Department.

The tables are intended to serve only as a guide and no guarantees can be given in respect of the data shown, which is based upon information available at the time of printing. Durapipe UK reserves the right to make any modifications deemed necessary by the acquisition of new data.

### Classification

| + | Resistant              |
|---|------------------------|
| * | Likely to be resistant |
| - | Not resistant          |

No data available

Vulcathene is classed \* Likely to be resistant on the basis of the way the material behaves with chemicals of the same family group and where extensive usage by Vulcathene customers indicates suitability.

Vulcathene is classed - Not resistant on the basis of unadulterated test samples. In practice, the routine disposal of a wide variety of hot and cold chemicals is accompanied by appropriate amounts of water for the purpose of dilution and flushing.

Where no data is available, but where details or samples of chemicals can be supplied, Durapipe UK will conduct chemical suitability tests and make recommendations accordingly.

### The following notes should be read in conjunction with the chemical resistance tables:

- These are compounds whose general formula is either
   (R1)<sup>2</sup>SO<sup>4</sup>(R2)<sup>2</sup>(SO4)<sup>6</sup>.24 H<sup>2</sup>O or (R1)(R2)(SO4)<sup>2</sup> 12 H<sup>2</sup>O,
   where R1 represents an atom of Potassium, Sodium,
   Ammonium, Rubidium, Caesium, Silver or Thallium; and
   (R2) represents an atom of Aluminium, Iron, Chromium,
   Manganese or Thallium.
- 2. This substance is insoluble in pure water. If conveyed aqueous it would always be in the form of a suspension.
- 3. This substance decomposes in hot water. Unless suitability is indicated refer to Durapipe UK.
- 4. Substances which are generally categorised can have widely variable compositions, and therefore each needs to be tested for suitability. Refer to Durapipe UK.
- This substance is only sparingly soluble in water.If conveyed aqueous it would usually be in the form of a suspension.
- 6. This substance is sparingly soluble in water, which then reacts with it.
- 7. A solution of Chromium trioxide in water, often produced by the action of concentrated Sulphuric acid on Sodium dichromate.

### **Radioactive Waste**

A well-established application for Vulcathene is low level radioactive waste solutions, e.g. in hospitals & research laboratories. To discuss specific requirements please contact our Technical Support Department on +44(0)1543 272445.

### **COSHH Regulations**

Attention is drawn to the requirements of the Health & Safety at Work Act and COSHH regulations. Durapipe UK cannot accept any responsibility for accidents arising from the misuse of its products, faulty installation and incorrect application. Copies of COSHH Regulations are available on request.

|  | Ì |  | ı |
|--|---|--|---|
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |

| Substance                             | Formula                                                                                                                                                 | Concentration            | Chemica of Vulca | al Resistan<br>thene | ce   |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|----------------------|------|
|                                       |                                                                                                                                                         |                          | 20°C             | 60°C                 | 80°0 |
| Acetaldehyde, aqueous                 |                                                                                                                                                         | 40%                      | +                | +                    |      |
| Acetamide, aqueous                    | CH <sub>3</sub> .CONH <sub>2</sub>                                                                                                                      |                          | +                | +                    |      |
| Acetic acid                           | CH <sub>3</sub> .COOH                                                                                                                                   | 100%                     | +                |                      | -    |
| Acetic adic, aqueous                  |                                                                                                                                                         | 70%                      | +                | +                    | +    |
| Acetetic anhydride                    | (CH <sub>3</sub> CO) <sub>2</sub> O                                                                                                                     | techn. grade             | +                |                      | -    |
| Acetone                               | (CH <sub>3</sub> ) <sub>2</sub> CO                                                                                                                      | techn. grade             | +                | +                    |      |
| cetophenone                           | C <sub>6</sub> H <sub>5</sub> CO. <sub>2</sub> CH <sub>3</sub>                                                                                          | techn. grade             | +                |                      |      |
| Acrylonitrile                         | CH <sub>2</sub> :CH <sub>-2</sub> CN                                                                                                                    | techn. grade             | +                |                      |      |
| Idipic acid, aqueous                  | (CH <sub>2</sub> CH <sub>2</sub> C.COOH) <sub>2</sub>                                                                                                   | saturated                | +                | +                    | +    |
| iir                                   | (011/2011/20100011/7/                                                                                                                                   | Saturatou                | +                | +                    | +    |
|                                       | CH <sub>2</sub> CH:CH <sub>2</sub> OH                                                                                                                   | 96%                      |                  |                      |      |
| Ally alcohol (2-Propenol-1)           |                                                                                                                                                         |                          | +                | +                    |      |
| lluminium chloride, aqueous           | AICI <sub>3</sub> ,AICI <sub>3</sub> .6H <sub>2</sub> O                                                                                                 | any                      | +                | +                    | +    |
| lluminium chloride, solid             |                                                                                                                                                         | /                        | +                | +                    |      |
| Aluminium fluoride                    | $AIF_3$ , $AIF_3$ . $H_2O$ $AIF_3$ . $3^1/2$ $H_2O$                                                                                                     | conc.                    | +                | +                    | +    |
| lluminium hydroxide (See Note 2)      | AI(OH) <sub>3</sub>                                                                                                                                     | /                        | +                | +                    |      |
| lluminium metaphosphate               | AI (PO <sub>3</sub> ) <sub>3</sub>                                                                                                                      | /                        | +                | +                    | +    |
| lluminium sulphate, aqueous           | Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> , Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> . 18 H <sub>2</sub> O                                 | saturated                | +                | +                    | +    |
| Aluminium sulphate, solid             | /                                                                                                                                                       | /                        | +                | +                    |      |
| llum, aqueous (See Note 1)            | / /                                                                                                                                                     | any                      | +                | +                    | +    |
| mino acids                            | / /                                                                                                                                                     |                          | +                | +                    | +    |
| -Aminoethanol (Ethanolamine)          | H <sub>2</sub> NCH <sub>2</sub> CH <sub>2</sub> OH                                                                                                      | techn. grade             | +                |                      |      |
| mmonia, aqueous                       | NH <sub>3</sub>                                                                                                                                         | any                      | +,-              | +                    |      |
| mmonia, gaseous                       | INI13                                                                                                                                                   | ally                     | +                | +                    |      |
|                                       |                                                                                                                                                         | /                        |                  |                      |      |
| mmonia, liquid                        | /                                                                                                                                                       |                          | / <del>+</del>   |                      |      |
| mmonia water                          | au aa wu                                                                                                                                                | any                      | +                | +                    |      |
| mmonium acetate, aqueous              | CH <sub>3</sub> CO <sub>2</sub> NH <sub>4</sub>                                                                                                         | any                      | +                | +                    | +    |
| Ammonium carbonate, aqueous           | /                                                                                                                                                       | /                        |                  |                      |      |
| (See Note 3)                          | NH <sub>4</sub> HCO <sub>3</sub> NH <sub>2</sub> COONH <sub>4</sub> ,H <sub>2</sub> NCOONH <sub>4</sub>                                                 | any                      | +                | +                    | +    |
| Ammonium chloride, aqueous            | /                                                                                                                                                       | /                        | /                |                      |      |
| (See Note 3)                          | NH <sub>4</sub> CI                                                                                                                                      | any                      | +                | +                    | +    |
| Ammonium fluoride, aqueous            | /                                                                                                                                                       | /                        |                  |                      |      |
| (See Note 3)                          | NH₄F                                                                                                                                                    | saturated                | +                | + /                  |      |
| Ammonium hydrogen                     | . /                                                                                                                                                     | /                        |                  |                      |      |
| arbonate, aqueous                     | NH <sub>4</sub> HCO <sub>3</sub>                                                                                                                        | saturated                | +                | +                    |      |
| mmonium hydrosulphide, aqueous        | NH <sub>4</sub> HS                                                                                                                                      | any                      | +                | 4                    |      |
|                                       | NH <sub>4</sub> NO <sub>3</sub>                                                                                                                         |                          |                  | /:                   |      |
| mmonium nitrate, aqueous              |                                                                                                                                                         | any                      | +                | +                    | +    |
| mmonium phosphate(s)                  | NH <sub>4</sub> H <sub>2</sub> PO <sub>4</sub> ,(NH <sub>4</sub> ) <sub>2</sub> HPO <sub>4</sub> ,(NH <sub>4</sub> )3PO <sub>4</sub> .3H <sub>2</sub> O | any                      | +                | +                    | +    |
| mmonium sulphate, aqueous             | $(NH_4)_2SO_4$                                                                                                                                          | any                      | +                | +                    | +    |
| mmonium sulphide, aqueous             | (NH <sub>4</sub> ) <sub>2</sub> S                                                                                                                       | any                      | +                | +                    | +    |
| mmonium thiocyanate                   | NH <sub>4</sub> SCN                                                                                                                                     | /                        |                  | -                    | -    |
| myl acetate                           | CH <sub>3</sub> .COO.(CH <sub>2</sub> ) <sub>4</sub> .CH <sub>3</sub> , Pentyl acetate                                                                  | techn. grade             |                  | -                    | -    |
| myl alcohol (C <sub>5</sub> alcohols) | CH <sub>3</sub> .(CH <sub>2</sub> ) <sub>3</sub> .CH <sub>2</sub> OH, Pentan-1-ol,                                                                      | /                        |                  |                      |      |
|                                       | Butyl carbinol                                                                                                                                          | tech. grade              | +                | +                    | +    |
| niline                                | C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub>                                                                                                           | any                      | +                | +                    |      |
| niline hydrochloride, aqueous         | C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> .HCI                                                                                                      | any                      | +                | +                    |      |
| nimal oils                            | 36.13.1112.1131                                                                                                                                         |                          | +                | ·                    |      |
| non (Cyclohexanone)                   | CH2-(CH2)4-CO                                                                                                                                           | /                        | +                |                      |      |
| ion (cyclonexanone)                   | 112.(0112/4.00                                                                                                                                          | /                        | '                |                      |      |
| nthraquinone sulphonic acid,          |                                                                                                                                                         | /                        |                  |                      |      |
|                                       | C H (CO )C H SO H                                                                                                                                       | /                        |                  |                      |      |
| queous (susp.)                        | $C_6H_4(CO_2)C_6H_4SO_3H$                                                                                                                               |                          | +                |                      |      |
| ntifreeze (automotive) (See Note 4)   |                                                                                                                                                         | as supplied commercially |                  |                      |      |
| ntimony chloride, anhydrous           | SbCl <sub>3</sub>                                                                                                                                       |                          | +                | +                    |      |
| ntimony pentachloride                 | SbCl <sub>3</sub>                                                                                                                                       | /                        | +                | +                    |      |
| ntimony trichloride                   | SbCl <sub>5</sub> , Antimony (III) chloride,                                                                                                            |                          |                  |                      |      |
|                                       | Butter of Antimony                                                                                                                                      |                          | +                | +                    |      |
| qua regia                             | (HCI+HNO <sub>3</sub> )                                                                                                                                 |                          | _                | -                    |      |
|                                       | J.                                                                                                                                                      |                          |                  |                      |      |

| Substance                            | Formula                                                                                               | Concentration                | Chemica of Vulca | al Resistano<br>thene | ce   |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------|------------------|-----------------------|------|
|                                      |                                                                                                       |                              | 20°C             | 60°C                  | 80°C |
| Aromatic oils                        |                                                                                                       |                              | -                | -                     |      |
| Arsenic acid, aqueous                | HA <sub>5</sub> O <sub>3</sub>                                                                        | any                          | +                | +                     |      |
| Arsenic acid anhydride               |                                                                                                       |                              | +                | +                     |      |
| Ascorbic acid                        | /                                                                                                     | /                            | +                | +                     |      |
| Asphalt<br>®Asprin                   | /                                                                                                     | /                            | +                |                       |      |
| Aspilii                              | /                                                                                                     | /                            | +                |                       |      |
| Barium hydroxide, aqueous            | Ba(0H) <sub>2</sub> 8H <sub>2</sub> 0                                                                 | any                          | +                | +                     | +    |
| Battery acid                         | conc. H <sub>2</sub> SO <sub>4</sub> diluted with                                                     | /                            |                  |                       |      |
|                                      | water to about 25%                                                                                    | /                            | +                | +                     |      |
| Beater glue (animal glue)            | /                                                                                                     | as supplied                  | +                | +                     |      |
| Beef tallow                          |                                                                                                       | /                            | +                | +                     |      |
| Beer Sugar selection                 | /                                                                                                     | +                            | +                |                       |      |
| Beer sugar colouring<br>Beeswax      | /                                                                                                     | as supplied commercially     | + +              | +                     |      |
| Benzaldehyde, aqueous                | C <sub>6</sub> H <sub>5</sub> .CHO                                                                    | any                          | +                |                       |      |
| Benzene                              | C <sub>6</sub> H <sub>6</sub>                                                                         | techn. grade                 | <u>'</u>         | _                     |      |
| Benzene sulphonic acid               | C <sub>6</sub> H <sub>5</sub> SO <sub>3</sub> H                                                       | toomi. grado                 | +                | +                     |      |
| Benzoic acid, aqueous                | C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H                                                       |                              | +                | +                     | +    |
| Benzyl alcohol                       | C <sub>6</sub> H <sub>5</sub> .CH <sub>2</sub> OH                                                     |                              | +                | +                     |      |
| Benzyl chloride                      | C <sub>6</sub> H <sub>5</sub> .CH <sub>2</sub> CI                                                     | /                            | -                | -                     | -    |
| Bichromate - sulphuric acid          | /                                                                                                     | conc.                        |                  | -                     | -    |
| Bismuth salts                        | /                                                                                                     |                              | +                |                       |      |
| Bisulphite liquor                    | /                                                                                                     | /                            | +                | +                     |      |
| Bitumen                              | /                                                                                                     | /                            | +                |                       |      |
| Bleaching solution containing        | /                                                                                                     |                              | 1                |                       |      |
| 12.5% active chlorine** Bone oil     | /                                                                                                     | /                            | +                | +                     | -    |
| Borax (Sodium tetraborate), aqueous  | Na <sub>2</sub> B <sub>4</sub> 07, Na <sub>2</sub> B <sub>4</sub> 0 <sub>7</sub> .10H <sub>2</sub> 0, |                              |                  | +                     |      |
| borax (Sourant tetraborate), aqueous | di-Sodium tetraborate                                                                                 | saturated                    | +                | +                     | +    |
| Boric acid, aqueous                  | H <sub>3</sub> BO <sub>3</sub>                                                                        | any                          | +                | +                     | +    |
| Brandy                               | ,520,                                                                                                 | 1                            | +                | +                     | ·    |
| Bromic acid                          | Hbr                                                                                                   | conc.                        | -                | -/                    | -    |
| Bromine, liquid                      | Br <sub>2</sub>                                                                                       | 100%                         | -                | -/-                   | -    |
| Bromine vapours                      | /                                                                                                     | /                            | -                | <i> -</i>  -          | -    |
| Butanediol, aqueous                  | HO(CH <sub>2</sub> ) <sub>4</sub> OH                                                                  | any                          | +                | +                     | +    |
| Butanetriol, aqueous                 | HOCH <sub>2</sub> CH <sub>2</sub> CH(OH)CH <sub>2</sub> OH                                            | any                          | +                | +                     |      |
| Butanol, aqueous                     | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> OH                                                    | any                          | +                |                       |      |
| Butanone<br>2-Butenediol-1.4         | C <sub>2</sub> H <sub>5</sub> COCH <sub>3</sub><br>HOCH <sub>2</sub> CH=CHCH <sub>2</sub> OH          | tashn grada                  | +                |                       |      |
| 2-Butynediol-1.4                     | $HOCH_2C = CCH_2OH$                                                                                   | techn. grade<br>techn. grade | + +              | +                     |      |
| ®Butoxyl (Metoxybutylacetate)        | CH <sub>3</sub> C00(CH <sub>2</sub> ) <sub>4</sub> 0CH <sub>3</sub>                                   | tecini. grade                | +                |                       |      |
| Butter                               | 0113000(0112/1400113                                                                                  | /                            | +                | +                     |      |
| Butylene glycol                      | HO(CH <sub>2</sub> ) <sub>4</sub> OH                                                                  | techn. grade                 | +                | .                     |      |
| Butyl acetate                        | CH <sub>3</sub> .COO.(CH <sub>2</sub> ) <sub>3</sub> .CH <sub>3</sub>                                 |                              | *                | -                     | -    |
| Butyl acrylate                       | $H_2C = CHCO_2(CH_2)_3CH_3$                                                                           | /                            | +                |                       |      |
| Butyl alcohol                        | CH <sub>3</sub> .(CH <sub>2</sub> ) <sub>3</sub> OH, Buton-I-ol                                       | /                            | +                |                       |      |
| Butyl phenol                         | C <sub>2</sub> H <sub>5</sub> CH(CH <sub>3</sub> )C <sub>6</sub> H <sub>4</sub> OH                    | techn. grade                 | +                |                       |      |
| Butyl phenone                        | $C_6H_5O(CH_2)_4CH_3$                                                                                 | techn. grade                 | -                | -                     | -    |
| Butyl phthalate (Dibutyl phthalate)  | $C_6H_4O(COOC_4H_9)_2$                                                                                | techn. grade                 | +                |                       |      |
| Butyric acid, auqeous                | CH <sub>3</sub> .CH <sub>2</sub> .CH <sub>2</sub> .COOH,                                              | any                          | +                |                       |      |
| <b>C</b> alcium carbide              | CaC <sub>2</sub>                                                                                      | /                            | +                | +                     |      |
| Calcium carbonate (See Note 5)       | CaCO <sub>3</sub>                                                                                     | /                            | +                | +                     | +    |
| Calcium chlorate, aqueous            | Ca(ClO <sub>3</sub> ) <sub>2</sub>                                                                    | saturated                    | +                | +                     |      |
| Calcium chloride, aqueous            | CaCl <sub>2</sub> ,CaCl <sub>2</sub> .2H <sub>2</sub> O,CaCl <sub>2</sub> .6H <sub>2</sub> O          | saturated                    | +                | +                     | +    |
| Calcium hydroxide (See Note 5)       | Ca(OH) <sub>2</sub>                                                                                   |                              | +                | +                     | +    |
| Classification: + = Resistant        | * = Likely to be resistant                                                                            | - = Not resistant            | = No da          | ata available         |      |

| ( |        |  |  |
|---|--------|--|--|
|   |        |  |  |
|   |        |  |  |
|   |        |  |  |
|   | ₫<br>1 |  |  |
|   | 5      |  |  |
|   |        |  |  |
|   |        |  |  |
|   |        |  |  |

| Substance                                        | Formula                                                                             | Concentration | Chemica<br>of Vulca | al Resistan<br>othene | ce   |
|--------------------------------------------------|-------------------------------------------------------------------------------------|---------------|---------------------|-----------------------|------|
|                                                  |                                                                                     |               | 20°C                | 60°C                  | 80°C |
| Calcium hypochlorite, aqueous                    |                                                                                     |               |                     |                       |      |
| (suspension)                                     | Ca(OCI) <sub>2</sub>                                                                |               | *                   | *                     | -    |
| Calcium nitrate, aqueous                         | $Ca(NO_3)_2$ , $Ca(NO_3)_2$ .4 $H_2O$                                               | 50%           | +                   | +                     | +    |
| Calcium oxide (powder) (See Note 6)              | CaO                                                                                 |               | +                   | +                     |      |
| Calcium sulphate (See Note 5)                    | CaSO <sub>4</sub> , CaSO <sub>4</sub> .2H <sub>2</sub> O (Gypsum),                  | /             |                     |                       |      |
| ,                                                | CaSO <sub>4</sub> . <sup>1</sup> / <sub>2</sub> H <sub>2</sub> O (Plaster of Paris) | /             | +                   | +                     | +    |
| Camphor oil                                      | 2                                                                                   | any           | _                   | _                     | -    |
| Cane sugar, aqueous                              | /                                                                                   | any           | +                   | +                     |      |
| Carbazole                                        | (C <sub>6</sub> H <sub>4</sub> ) <sub>2</sub> NH                                    | 1             | +                   | +                     |      |
| Carbolic acid (Phenol)                           | C <sub>6</sub> H <sub>5</sub> OH                                                    | /             | +                   |                       |      |
| Carbonic acid, aqueous                           | H <sub>2</sub> CO <sub>3</sub>                                                      | any           | +                   | +                     |      |
| Carbonic acid, dry                               | 2 - 3                                                                               | 100%          | +                   | +                     |      |
| Carbon dioxide                                   | CO <sub>2</sub>                                                                     | 100%          | +                   | +                     |      |
| Carbon monoxide, gaseous                         | CO                                                                                  | techn. grade  | +                   | +                     |      |
| Castor oil                                       | · /                                                                                 |               | +                   | +                     |      |
| Caustic soda solution                            | NaOH,                                                                               | any           | +                   | +                     | +    |
| Cetyl alcohol (Hexadecanol)                      | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>15</sub> OH                                 |               | +                   |                       |      |
| Chloral (Trichloroacetaldehyde)                  | CCI <sub>3</sub> CHO                                                                | techn. grade  | +                   | +                     |      |
| Chloramine, aqueous                              | NH <sub>2</sub> CI                                                                  | saturated     | +                   |                       |      |
| Chloric acid, aqueous                            | HCIO <sub>3</sub>                                                                   | 10%           | +                   |                       | -    |
| Chloric acid, aqueous                            | ,,                                                                                  | 20%           | +                   | _                     | -    |
| Chlorinated lime                                 | /                                                                                   | 2070          | +                   | +                     |      |
| Chlorine, aqueous solution                       | /                                                                                   | /             | 1 /                 |                       |      |
| (chlorine water)                                 | $CI_2 + H_2O$                                                                       | saturated     | *                   | _                     | _    |
| Chlorine, gaseous, dry                           | 0.7 1 1.20                                                                          | outuratou     | / /                 | _                     | _    |
| Chlorine, gaseous, moist                         | /                                                                                   |               | / .                 | _                     | _    |
| Chlorine, liquid                                 | /                                                                                   | /             |                     | _                     | _    |
| Chlorine bleaching solution with                 | /                                                                                   | /             | /                   |                       |      |
| 12.5% active chlorine                            | /                                                                                   |               | · .                 | _                     | _    |
| Chloroacetic acid, aqueous                       | CICIH <sub>2</sub> CO <sub>2</sub> H                                                | <85%          | +                   | +                     |      |
| Chlorobenzene                                    | C <sub>6</sub> H <sub>5</sub> CI                                                    | 177           | _                   | · -                   | _    |
| Chloroform                                       | CHCl <sub>3</sub>                                                                   | techn. grade  | _                   | - /                   | -    |
| Chloromethyl bromide                             | CH <sub>2</sub> CIBr                                                                |               | _                   | -//                   | _    |
| Chlorlsulphonic acid                             | CISO <sub>3</sub> H                                                                 | techn. grade  | _                   |                       | -    |
| Chrome alum (Potassium chromic                   |                                                                                     | g. acc        |                     | /                     |      |
| sulphate) aqueous                                | / /                                                                                 | saturated     | +                   | 1 / +                 | +    |
| Chrome anode slime                               | / /                                                                                 | Jacanatoa     | +                   |                       |      |
| Chromic acid, aqueous (See Note 7)               | /                                                                                   | 50%           |                     | / _                   | _    |
| Chromium trioxide, aqueous                       | CrO <sub>3</sub>                                                                    | 50%           |                     | _                     | _    |
| Chromosulphuric acid                             | 0.03                                                                                | 5575          | -                   | _                     | _    |
| Cider                                            | /                                                                                   | /             | +                   | +                     | +    |
| Citric acid, aqueous                             | C(OH)(COOH)(CH <sub>2</sub> COOH) <sub>2</sub> .H <sub>2</sub> O                    | saturated     | +                   | +                     | +    |
| Citrus juices                                    | 0(011)(00011)(011200011)(211120                                                     | outuratou     | +                   | +                     |      |
| Coal tar oil                                     | /                                                                                   | /             |                     |                       | _    |
| Coconut oil                                      | /                                                                                   | /             | +                   |                       |      |
| Coconut oil alchohol                             | /                                                                                   | techn. grade  | +                   |                       |      |
| Cod liver oil                                    | /                                                                                   | toomi. grado  | +                   |                       |      |
| Coffee extract                                   | /                                                                                   | /             | +                   | +                     |      |
| Cognac                                           | _ /                                                                                 | /             | +                   |                       |      |
| Cola concentrates                                | _ /                                                                                 | /             | +                   | +                     |      |
| Common salt, aqueous                             | NaCl                                                                                | any           | +                   |                       | +    |
| Connition sait, aqueous Copper chloride, aqueous | CuCl, CuCl <sub>2</sub> , CuCl <sub>2</sub> .2H <sub>2</sub> O                      | saturated     | +                   | +                     | +    |
| Copper cyanide, aqueous                          | Cu CN <sub>2</sub>                                                                  | saturated     | +                   | +                     |      |
| Copper fluoride, aqueous                         | Cu F <sub>2</sub>                                                                   | saturated     | +                   |                       |      |
| Copper nitrate, aqueous                          | $Cu(NO_3)_2$ .3H <sub>2</sub> O, Cupric nitrate                                     | 30%           | +                   | +                     |      |
| Copper sulphate, aqueous                         | CuSO <sub>4</sub> , CuSO <sub>4</sub> .5H <sub>2</sub> O, Cupric sulphate           | any           | +                   | +                     | +    |
| ooppor ourprieto, aquobuo                        | 54504, 54504.51125, Supris Surpriste                                                | uny uny       | '                   | '                     |      |

| Substance                               | Formula                                                                                                                                                         | Concentration            | Chemica of Vulca | al Resistan<br>Ithene | ce   |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|-----------------------|------|
|                                         |                                                                                                                                                                 |                          | 20°C             | 60°C                  | 80°C |
| Corn oil                                |                                                                                                                                                                 |                          | +                | +                     |      |
| Cottonseed oil                          |                                                                                                                                                                 | techn. grade             | +                | +                     |      |
| Coumarone resins                        |                                                                                                                                                                 |                          | +                |                       |      |
| Creosote                                |                                                                                                                                                                 | /                        | *                |                       |      |
| Cresol                                  | CH <sub>3</sub> (C <sub>6</sub> H <sub>4</sub> )OH                                                                                                              | 100%                     | +                |                       |      |
| Cresol, aqueous                         | Isomers of CH <sub>3</sub> .C <sub>6</sub> H <sub>4</sub> .OH,                                                                                                  | /                        |                  |                       |      |
|                                         | Cresylic acid                                                                                                                                                   | dilute                   | +                |                       |      |
| Crotonaldehyde                          | CH <sub>3</sub> CH=CHCHO                                                                                                                                        | techn. grade             | +                |                       |      |
| Cyclanone (fatty alcohol sulponate)     | /                                                                                                                                                               | as supplied commercially | +                | +                     |      |
| Cyclohexanol                            | CH <sub>2</sub> -(CH <sub>2</sub> ) <sub>4</sub> -CH.0H                                                                                                         | /                        | +                | +                     |      |
|                                         |                                                                                                                                                                 | /                        |                  |                       |      |
| Cyclohexanone (Anon)                    | CH <sub>2</sub> .(CH <sub>2</sub> ) <sub>4</sub> .CO                                                                                                            | /                        | +                |                       |      |
| -,,                                     |                                                                                                                                                                 | /                        |                  |                       |      |
|                                         |                                                                                                                                                                 | /                        |                  |                       |      |
| <b>D</b> ecahydronaphthalene (®Dekalin) | C <sub>10</sub> H <sub>18</sub>                                                                                                                                 | techn. grade             | -                | -                     |      |
| Detergents                              | ""/                                                                                                                                                             | /                        | +                | +                     |      |
| Developer solutions (photographic)      | / /                                                                                                                                                             | /                        | +                | +                     |      |
| Dextrin (starch gum), aqueous           | / /                                                                                                                                                             | 18%                      | +                | +                     | +    |
| Dextrose, aqueous                       | O(CH.OH) <sub>4</sub> .CH.CH <sub>2</sub> OH, D-Glucose                                                                                                         | any                      | +                | +                     | +    |
| 1.2-Diaminoethane (Ethylenediamine)     | H <sub>2</sub> NCH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                                                                                                 | techn. grade             | +                | +                     |      |
| 1.2-Dibromoethane                       | BrCH <sub>2</sub> CH <sub>2</sub> Br                                                                                                                            | toom. grado              |                  |                       | _    |
| Dibutyl ether                           | [CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> ]0                                                                                                             | /                        |                  | _                     | _    |
| Dibutyl phthalate (Butyl phthalate)     | $C_6H_4(C00C_4H_9)_2$                                                                                                                                           | techn. grade             | +                | _                     | -    |
| Dibutyl sebacate                        | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> O <sub>2</sub> C(CH <sub>2</sub> ) <sub>8</sub> CO <sub>2</sub> (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> | tecini. grade            | +                |                       |      |
| Dichloroacetic acid                     |                                                                                                                                                                 | tacha grada              |                  |                       |      |
|                                         | CI <sub>2</sub> CHC00H                                                                                                                                          | techn. grade             | +                |                       |      |
| Dichloroacetic acid methyl ester        | CI <sub>2</sub> CHCO <sub>2</sub> CH <sub>3</sub>                                                                                                               |                          | / -              | -                     | -    |
| Dichlorobenzene                         | C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub>                                                                                                                   | /                        | -                | -                     | -    |
| Dichlorodiphenyltrichloroethane         | /                                                                                                                                                               |                          |                  |                       |      |
| (DDT, powder)                           |                                                                                                                                                                 | 1 // /                   | +                | +                     |      |
| Diethanolamine                          | [CH <sub>2</sub> (OH).CH <sub>2</sub> ] <sub>2</sub> NH                                                                                                         | techn. grade             | +                |                       |      |
| Diethylene glycol                       | (HOCH <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> 0                                                                                                             | / _                      | +                | +                     |      |
| Diethyl ether                           | $(C_2H_5)_2O$                                                                                                                                                   |                          | -                | - /                   | -    |
| Diglycolic acid, aqueous                | 0(CH <sub>2</sub> CO <sub>2</sub> H) <sub>2</sub>                                                                                                               | 30%                      | +                | +                     |      |
| Dihexyl phthalate                       | $C_6H_4(COOC_6H_{11})_2$                                                                                                                                        | techn. grade             | +                |                       |      |
| Diisobutylketone                        | [(CH <sub>3</sub> ) <sub>2</sub> CH.CH <sub>2</sub> ] <sub>2</sub> CO                                                                                           | techn. grade             | +                | /-                    | -    |
| Diisoctyl phthalate                     | $C_6H_4(COOC_8H_{17})_2$                                                                                                                                        | techn. grade             | +                | -/-                   |      |
| Dimethylamine                           | (CH <sub>3</sub> ) <sub>2</sub> NH                                                                                                                              |                          | +                |                       |      |
| Dimethyl formamide                      | H.Co.N(CH <sub>3</sub> ) <sub>2</sub> , DMF, N.                                                                                                                 |                          |                  | /                     |      |
|                                         | N-Dimethylformamide                                                                                                                                             | techn. grade             | +                | +                     |      |
| Dinonyl phthalate (DNP)                 | $C_6H_4(C00C_9H_{19})_2$                                                                                                                                        | techn. grade             | +                |                       |      |
| Dioctyl phthalate                       | $C_6H_4[COO.CH_2.CH(C_2H_5)(CH_2)_3CH_3]$                                                                                                                       | /                        |                  |                       |      |
|                                         | 2, Di-(2-ethylhexyl) phthalate, DOP                                                                                                                             | /                        | +                |                       |      |
| Disodium phosphate                      | Na <sub>2</sub> HPO <sub>4</sub>                                                                                                                                | /                        | +                | +                     | +    |
| Disodium sulphate                       | Na <sub>2</sub> SO <sub>4</sub>                                                                                                                                 | /                        | +                | +                     | +    |
| Dodecylbenzenesulphonic acid            | C <sub>12</sub> H <sub>25</sub> C <sub>6</sub> H <sub>4</sub> SO <sub>3</sub> H                                                                                 | /                        | +                | '                     |      |
| Drinking water, also clorinated         | H <sub>2</sub> 0                                                                                                                                                | /                        | +                | +                     | +    |
| Diffiking water, also cionnated         | 1120                                                                                                                                                            | /                        | '                | '                     | 1    |
| Emulsions (photographic)                | /                                                                                                                                                               | /                        | +                | +                     |      |
| Epichlorohydrin                         | CICH <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> 0                                                                                                             | /                        | +                |                       |      |
| Ethanolamine (2-Aminoethanol)           | H <sub>2</sub> NCH <sub>2</sub> CH <sub>2</sub> OH                                                                                                              | techn. grade             | +                |                       |      |
| Ethanol                                 | CH <sub>3</sub> CH <sub>2</sub> OH                                                                                                                              | 96%                      | +                | +                     | +    |
| Ether, Diethyl ether                    | $(C_2H_5)_2O$                                                                                                                                                   | /                        | _                | _                     |      |
| Ethylenediamine tetraacetic acid        | [CH <sub>2</sub> .N(CH <sub>2</sub> .COOH <sub>2</sub> )] <sub>2</sub>                                                                                          | /                        | +                | +                     | +    |
| Ethylene chlorohydrin (Chloroethanol)   | CICH <sub>2</sub> CH <sub>2</sub> OH                                                                                                                            | techn. grade             | +                |                       | •    |
| Ethylene diamine (1.2-Diaminoethane)    | H <sub>2</sub> NCH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                                                                                                 | techn. grade             | +                | +                     |      |
| Ethylene dichloride (Dichloroethane)    | CICH <sub>2</sub> CH <sub>2</sub> CI                                                                                                                            | Comin. Brado             | _ '              |                       | -    |
| Ethylene glycol                         | CH <sub>2</sub> (OH).CH <sub>2</sub> OH                                                                                                                         |                          | +                | +                     | +    |
| במון וטווט פון טטו                      | 5112(011).0112011                                                                                                                                               |                          | 1 15             | '                     | 1    |

euotes@tipes.co.ul

| Substance                              | Formula                                                                          | Concentration            | Chemica of Vulca | l Resistan<br>thene | ce   |
|----------------------------------------|----------------------------------------------------------------------------------|--------------------------|------------------|---------------------|------|
|                                        |                                                                                  |                          | 20°C             | 60°C                | 80°C |
| Ethylene glycol monobutyl ether        | HOCH <sub>2</sub> CH <sub>2</sub> OC <sub>4</sub> H <sub>9</sub>                 | techn. grade             | +                |                     |      |
| Ethylene oxide, gaseous                | CH <sub>2</sub> .CH <sub>2</sub> O                                               |                          | +                |                     |      |
| Ethyl acetate                          | CH <sub>3</sub> .C00.C <sub>2</sub> H <sub>5</sub>                               | techn. grade             | +                |                     |      |
| Ethyl alcohol                          | C <sub>2</sub> H <sub>5</sub> OH                                                 | techn. grade             | +                | +                   | +    |
| Ethyl alcohol + Avetic acid            | 2 0                                                                              | /                        |                  |                     |      |
| (fermentation mixture)                 |                                                                                  | as used in brewing       | +                | +                   |      |
| Ethyl benzene                          | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CH <sub>3</sub>                    | techn. grade             | _                | _                   | _    |
| Ethyl chloride                         | $C_2H_5CI$                                                                       | techn. grade             | _                | _                   | _    |
| Ethyl chloride (Chloroethante)         | CH <sub>3</sub> CH <sub>2</sub> CI                                               | techn. grade             | _                | _                   | _    |
| Ethyl ether                            | $(C_2H_5)_2O$                                                                    | techn. grade             | _                | _                   |      |
| Ethyl ether (Diethyl ether)            | $(C_2H_5)0$                                                                      | tecini. grade            | _                | _                   |      |
| Ethyl ether (Diethyl ether)            | (C <sub>2</sub> H <sub>5</sub> )0                                                |                          | -                | -                   | -    |
| Fatty acids                            |                                                                                  |                          | +                | +                   |      |
| Fatty acid amides                      |                                                                                  |                          | +                |                     |      |
| Fatty alcohols                         |                                                                                  |                          | +                |                     |      |
| Ferric ammonium sulphate, aqueous      | NH <sub>4</sub> Fe(SO <sub>4</sub> ) <sub>2</sub> . 12H <sub>2</sub> O saturated |                          | +                | +                   | +    |
| Ferric chloride                        | FeCl <sub>3</sub> , FeCl <sub>3</sub> .6H <sub>2</sub> O, Iron (III) chloride    | saturated                | +                | +                   | +    |
| Ferric nitrate, aqueous                | Fe( $NO_3$ ) <sub>3</sub> .9H <sub>2</sub> O, Iron (III) nitrate                 | saturated                | +                | +                   | +    |
|                                        |                                                                                  | Saturateu                |                  |                     | Т    |
| Ferric sulphate, aqueous (See Note 3)  | $Fe_2(SO_4)_3$ , $Fe_2(SO_4)_3$ .x $H_2O$ ,                                      |                          |                  |                     |      |
|                                        | Iron (III) sulphate                                                              | saturated                | +                | +                   | +    |
| Ferrous chloride, aqueous              | FeCl <sub>2</sub> .4H <sub>2</sub> O                                             | saturated                | +                | +                   | +    |
| Ferrous sulphate, aqueous              | FeSO <sub>4</sub> 7H <sub>2</sub> O                                              | saturated                | + -              | +                   | +    |
| Fertilizer salts, aqueous              |                                                                                  | any                      | +                | +                   |      |
| Fluorine, gaseous                      | F <sub>2</sub>                                                                   |                          | - /-             | -                   | -    |
| Formaldehyde, aqueous                  | НСНО                                                                             | up to 40%                | +                | +                   |      |
| Formamide                              | HCONH <sub>2</sub>                                                               |                          | / +              | +                   |      |
| Formic acid, aqueous                   | H.COOH                                                                           | 10%                      | +                | +                   |      |
| Formic acid, aqueous                   |                                                                                  | 85%                      | +                |                     |      |
| Fructose                               | 0.CH <sub>2</sub> .(CH.OH) <sub>3</sub> .C(OH).CH <sub>2</sub> OH,               |                          |                  |                     |      |
| /                                      | Laevulose                                                                        |                          | +                | +                   | +    |
| Fruit juices                           |                                                                                  | any                      | +                | +                   | +    |
| Fruit juices, fermented                |                                                                                  | /                        | +                | +                   | +    |
| Fruit pulp                             |                                                                                  |                          | +                | +//                 | +    |
| Fuming sulphuric acid                  | $(H_2SO_4 + SO_3)$                                                               | any                      | _                | 1                   | _    |
| Furfuryl alcohol                       | 0.CH:CH:C.CH <sub>2</sub> OH                                                     | +                        |                  |                     |      |
| Turiuryi alconor                       | 0.011.011.01.01.011/2011                                                         | '                        |                  |                     |      |
| Gas, manufactured                      |                                                                                  | as supplied commercially | +                |                     |      |
| Gas, natural                           |                                                                                  | techn. grade             | +                |                     |      |
| Geletin                                |                                                                                  |                          | +                | +                   | +    |
| Gin                                    |                                                                                  |                          | +                |                     |      |
| Glacial acetic acid (100% acetic acid) | CH₃COOH                                                                          | techn. grade             | +                |                     | _    |
| Glauber's salt, aqueous                | Na <sub>2</sub> SO <sub>4</sub> 10H <sub>2</sub> O                               | any                      | +                | +                   | +    |
| Glucose, aqueous                       |                                                                                  | any                      | +                | +                   | +    |
| Glycerin(e)                            | CH20H.CH0H.CH20H,                                                                | any                      | '                | '                   |      |
| alyourin(o)                            | Glycerol 1,2,3-Propanetriol                                                      | any                      | +                | +                   | +    |
| Glycine (Aminoacetic acid)             | H <sub>2</sub> NCH <sub>2</sub> CO <sub>2</sub> H                                | ally                     | +                | +                   | į    |
|                                        | H0CH <sub>2</sub> CO <sub>2</sub> H                                              | up to 709/               |                  |                     |      |
| Glycolic Acid, aqueous                 | πυση <sub>2</sub> συ <sub>2</sub> π                                              | up to 70%                | +                |                     |      |
| <b>H</b> eptane                        | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub>                  |                          | _                | _                   | _    |
| Hexafluorosilicic acid, aqueous        | H <sub>2</sub> SiF <sub>6</sub>                                                  | 40%                      | +                | +                   |      |
| Hexane                                 | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> CH <sub>3</sub>                  |                          | _                |                     | _    |
| Hexanetriol                            | HO(CH <sub>2</sub> ) <sub>4</sub> CH(OH)CH <sub>2</sub> OH                       | 4                        | +                | +                   |      |
| Honey                                  | 113 (3/12/4011(011/0112011                                                       | /                        | +                | +                   | +    |
| Hydrazine hydrate                      | NH <sub>2</sub> .NH <sub>2</sub> H <sub>2</sub> O                                |                          | + _              |                     | Т    |
|                                        |                                                                                  | 50%                      |                  |                     |      |
| Hydrobromic acid, aqueous              | HBr                                                                              |                          | +                | +                   |      |
| Hydrochloric acid, aqueous             | HCI                                                                              | any                      | +                | +                   |      |
| Hydrocyanic acid                       | HCN                                                                              |                          | +                | +                   |      |

| Substance                                                | Formula                                                                                        | Concentration            | Chemica of Vulca | al Resistan<br>Ithene                 | ce     |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------|------------------|---------------------------------------|--------|
|                                                          |                                                                                                |                          | 20°C             | 60°C                                  | 80°C   |
| Hydrofluoric acid, aqueous                               | HF                                                                                             | 85%                      | +                |                                       |        |
| Hydrogen                                                 | H <sub>2</sub>                                                                                 |                          | +                | +                                     |        |
| Hydrogen chloride gas, dry and moist                     |                                                                                                |                          | +                | +                                     |        |
| Hydrogen peroxide, aqueous                               | H <sub>2</sub> O <sub>2</sub>                                                                  | 10%                      | +                | +                                     |        |
| Hydrogen peroxide, aqueous                               | 11.0                                                                                           | 30%                      | +                |                                       |        |
| Hydrogen sulphide, aqueous<br>Hydrogen sulphide, gaseous | H <sub>2</sub> S                                                                               | saturated                | + +              | + +                                   |        |
| Hydroxylamine sulphated, aqueous                         | (H <sub>2</sub> NOH) <sub>2</sub> .H <sub>2</sub> SO <sub>4</sub>                              | 12%                      | +                | +                                     |        |
| Hypochlorous acid                                        | HOCI                                                                                           | 12%                      | *                | *                                     |        |
|                                                          | /                                                                                              | /                        |                  |                                       |        |
| Ink                                                      | /                                                                                              | 004 : 15                 | +                | + *                                   |        |
| lodine in potassium iodide solution                      |                                                                                                | 3% iodine                | *                | *                                     |        |
| lodine tincture<br>Isobutyl alcohol (Isobutanol)         | C <sub>2</sub> H <sub>5</sub> CH(OH)CH <sub>3</sub>                                            | as supplied commercially | +                |                                       |        |
| Isooctane                                                | $(CH_3)_2CHCH_2C(CH_3)_3$                                                                      | /                        |                  | _                                     |        |
| Isopropanol                                              | (CH <sub>3</sub> ) <sub>2</sub> CHOH                                                           | techn. grade             | +                | +                                     | +      |
| Isopropyl ether                                          | [(CH <sub>3</sub> ) <sub>2</sub> CH] <sub>2</sub> 0                                            | techn. grade             | _                | -                                     | -      |
| i-Propanol (i-Propyl alcohol)                            | (CH <sub>3</sub> ) <sub>2</sub> CHOH                                                           |                          | +                | +                                     | +      |
| lam.                                                     | /                                                                                              | /                        |                  |                                       |        |
| Jam                                                      | / /                                                                                            | /                        | +                | +                                     | +      |
| Lactic acid, aqueous                                     | CH <sub>3</sub> .CHOH.COOH                                                                     | any                      | +                | +                                     | +      |
| Lactose (milk sugar)                                     | /                                                                                              |                          | +                | +                                     | +      |
| Lanolin                                                  | (wool fat)                                                                                     |                          | +                |                                       |        |
| Latex                                                    | (011, 000) PL 011 0                                                                            |                          | +                | +                                     |        |
| Lead acetate, aqueous                                    | (CH <sub>3</sub> .C00) <sub>2</sub> Pb.3H <sub>2</sub> 0                                       | any                      | +                | +                                     | +      |
| Lead tetraethyl<br>Lime (See Note 5)                     | CaO                                                                                            | /                        | +                |                                       |        |
| Lime (See Note 5)                                        | Cau                                                                                            |                          | + +              | + +                                   | +<br>+ |
| Linseed oil                                              | /                                                                                              | techn. grade             | +                | +                                     | +      |
| Lithium bromide                                          | /                                                                                              |                          | +                | +                                     | +      |
| /                                                        | M 00 M 00 2H 0 M 00 5H 0                                                                       | / _                      |                  |                                       |        |
| Magnesium carbonate                                      | MgCO <sub>3</sub> , MgCO <sub>3</sub> .3H <sub>2</sub> O, MgCO <sub>3</sub> .5H <sub>2</sub> O | 1/                       |                  | /                                     |        |
| Magnesium chloride, aqueous                              | Magnesite<br>MgCl <sub>2</sub> , MgCl <sub>2</sub> .6H <sub>2</sub> O                          | /                        | + +              | + +                                   | +<br>+ |
| Magnesium hydroxide (See Note 5)                         | Mg(OH) <sub>2</sub>                                                                            | 1                        | +                | +                                     | +      |
| Magnesium iodide                                         | Mg I <sub>2</sub>                                                                              | any                      | +                | +                                     | +      |
| Magnesium sulphate (Epsom salts),                        |                                                                                                | 9                        |                  | /                                     |        |
| aqueous                                                  | MgSO <sub>4</sub> , MgSO <sub>4</sub> .H <sub>2</sub> O, MgSO <sub>4</sub> 7H <sub>2</sub> O   | up to 100%               | +                | +                                     | +      |
| Maleic acid, aqueous                                     | $HO_2CCH = CHCO_2H$                                                                            |                          | +                | +                                     | +      |
| Malic acid, aqueous                                      | HO <sub>2</sub> CCH <sub>2</sub> CH(OH)CO <sub>2</sub> H                                       | 50%                      | +                | +                                     | +      |
| Manganese sulphate                                       | MnSO <sub>4</sub>                                                                              | /                        | +                |                                       |        |
| Margarine                                                | /                                                                                              | /                        | +                | +                                     |        |
| Mash                                                     | /                                                                                              | as supplied              | +                | +                                     |        |
| Mayonnaise<br>Mercury                                    | Hg                                                                                             | /                        | + +              | +                                     |        |
| Metal soaps                                              | ng                                                                                             | /                        | +                | +                                     | +      |
| Methacrylic acid                                         | $H_2C = C(CH_3)CO_2H$                                                                          | /                        | +                | +                                     | '      |
| Methanol                                                 | CH <sub>3</sub> OH                                                                             | techn. grade             | +                | +                                     |        |
| Methoxybutanol                                           | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>4</sub> OH                                            | /                        | +                |                                       |        |
| Methoxybutyl acetate (®Butoxyl)                          | CH <sub>3</sub> CO <sub>2</sub> (CH <sub>2</sub> ) <sub>4</sub> OCH <sub>3</sub>               | /                        | +                |                                       |        |
| Methylamine, aqueous                                     | CH <sub>3</sub> NH <sub>2</sub>                                                                | 32%                      | +                |                                       |        |
| Methylene chloride (dichloromethane)                     | CH <sub>2</sub> CI <sub>2</sub>                                                                | /                        | -                | -                                     | -      |
| Methylisobutyl ketone                                    | (CH <sub>3</sub> ) <sub>2</sub> CH.Ch <sub>2</sub> .COCH <sub>3</sub>                          | techn. grade             | +                |                                       |        |
| Methyl acetate (Acetic acid                              | CH CO CH                                                                                       | tachn grada              |                  |                                       |        |
| methyl ester)<br>Methyl alcohol                          | CH <sub>3</sub> CO <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub> OH                          | techn. grade             | + +              | + +                                   |        |
| mouryi aicuitui                                          | 013011                                                                                         |                          |                  |                                       |        |
| Classification: + = Resistant                            | * = Likely to be resistant                                                                     | - = Not resistant = No   | data available   | · · · · · · · · · · · · · · · · · · · |        |

|  |  | i |
|--|--|---|
|  |  | ı |

| Substance                                        | Formula                                                                                                    | Concentration | Chemica of Vulca | al Resistano<br>thene | ce   |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------|------------------|-----------------------|------|
|                                                  |                                                                                                            |               | 20°C             | 60°C                  | 80°C |
| Methyl benzene                                   | C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub>                                                              |               | -                | -                     |      |
| Methyl bromide (Bromomethane),                   |                                                                                                            |               |                  |                       |      |
| gaseous                                          | CH₃Br                                                                                                      | techn. grade  | -                | -                     | -    |
| Methyl chloride (Chloromethane),                 | 7                                                                                                          | /             |                  |                       |      |
| gaseous                                          | CH₃CI                                                                                                      | techn. grade  | -                | -                     | -    |
| Methyl cyclohexane                               | C <sub>6</sub> H <sub>11</sub> CH <sub>3</sub>                                                             | /             | -                | -                     | -    |
| Methyl ethyl ketone                              | C <sub>2</sub> H <sub>5</sub> .CO.CH <sub>3</sub>                                                          | techn. grade  | +                |                       |      |
| Methyl glycol                                    | (011.) (11011 (11/011)(11                                                                                  | /             | +                | +                     |      |
| 1-Methyl pentanol-2                              | (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> CH(OH)CH <sub>3</sub>                                    | /             | +                |                       |      |
| Methyl propyl ketone                             | CH <sub>3</sub> COCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                          | /             | +                |                       |      |
| Methyl salicylate (Salicyclic acid methyl ester) | 3 (HO)C H CO CH                                                                                            | /             |                  |                       |      |
| Methyl sulphuric acid                            | 2-(H0)C <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub> OSO <sub>2</sub> OH | 50%           | +                |                       |      |
| Milk                                             | CΠ <sub>3</sub> USU <sub>2</sub> UΠ                                                                        | 50%           | +                | +                     |      |
| Mineral water                                    |                                                                                                            |               | + +              | + + +                 | ++   |
| Molasses                                         |                                                                                                            | /             | + +              | +                     | +    |
| Molasses wort                                    |                                                                                                            |               | +                | +                     |      |
| Monochloroacetic acid                            | CICH <sub>2</sub> CO <sub>2</sub> H                                                                        |               | + +              | +                     |      |
| Monochloroacetic acid ethyl ester                | CICh <sub>2</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                                            |               | +                | +                     |      |
| Monochloroacetic acid methyl ester               | CICH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub>                                                          | /             | +                | +                     |      |
| Morpholine                                       | NHCH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub>                                         | /             | +                | +                     |      |
| vioi priolitie                                   |                                                                                                            | /             |                  | T                     |      |
| Mustard                                          |                                                                                                            | /             | +                | +                     | +    |
| Must                                             |                                                                                                            | + /           | +                | +                     | '    |
| iust                                             |                                                                                                            |               | 1                | '                     |      |
| lail varnish remover                             | (see note 4)                                                                                               | /             | /                |                       |      |
| Nickel chloride                                  | NiCl <sub>2</sub> , NiCl <sub>2</sub> . 6H <sub>2</sub> O                                                  |               | +                | +                     | +    |
| Nickel nitrate                                   | Ni(NO <sub>3</sub> ) <sub>2</sub> . 6H <sub>2</sub> O                                                      |               | +                | +                     | +    |
| Nickel sulphate, aqueous                         | NiSO <sub>4</sub> , NiSO <sub>4</sub> . 6H <sub>2</sub> O                                                  | / /           | +                | +                     | +    |
| Nicotinic acid                                   | C <sub>6</sub> H <sub>4</sub> NCOOH                                                                        | any           | +                | +                     | +    |
| Nitric acid                                      | HNO <sub>3</sub>                                                                                           | 25%           | +                | -                     | -    |
| 2.2',2"-Nitrilotriethanol                        |                                                                                                            |               |                  |                       |      |
| (Triethanolamine),                               | (HOCH <sub>2</sub> CH <sub>2</sub> ) <sub>3</sub> N                                                        | /             | +                | +                     |      |
| Vitrobenzene                                     | $C_6 H_5 NO_2$                                                                                             |               | +                | +                     |      |
| Nitrocellulose                                   |                                                                                                            |               | +                | /                     |      |
| p-Nitrotoluene                                   | CH <sub>3</sub> . C <sub>6</sub> H <sub>4</sub> NO <sub>2</sub>                                            |               | +                | /-                    |      |
| Nonyl alcohol (nonanol)                          | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> OH                                                         |               | +                | /                     |      |
| Nut oil                                          |                                                                                                            |               | +                |                       |      |
| Octyl cresol                                     | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> C <sub>6</sub> H <sub>3</sub> (CH <sub>2</sub> )0H         | techn. grade  |                  | -                     |      |
| Dleic acid                                       | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> CH:CH(CH <sub>2</sub> ) <sub>7</sub> COOH,                 | /             |                  |                       |      |
|                                                  | 9-Octadecanoic acid                                                                                        | /             | +                | -                     |      |
| Olive oil                                        |                                                                                                            | /             | +                | +                     | +    |
| Orange juice                                     |                                                                                                            | /             | +                | +                     | +    |
| Oxalic acid, aqueous                             | (COOH) <sub>2</sub> 2H <sub>2</sub> O                                                                      | any           | +                | +                     | +    |
| Oxygen                                           | 02                                                                                                         | /             | +                | +                     |      |
| zone                                             | $O_3$                                                                                                      | 50 pphm       | +                | *                     |      |
| 'almitic acid                                    | CH (CH ) COOH                                                                                              | /             |                  |                       |      |
| Palmityl alcohol                                 | CH <sub>3</sub> . (CH <sub>2</sub> ) <sub>14</sub> . COOH                                                  | /             | + +              | + + +                 |      |
| alm nut oil                                      |                                                                                                            | /             | + +              | +                     |      |
| ann nut on<br>araformaldehyde                    | (CH <sub>2</sub> 0)n                                                                                       | /             | +                |                       |      |
| eanut oil                                        | (0.120)11                                                                                                  | techn. grade  | +                | +                     |      |
| eanut on<br>entanol                              | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> OH                                                         | toonii. graue | +                |                       |      |
| entanoi<br>erchloric acid, aqueous               | HCIO <sub>4</sub>                                                                                          | 20%           | T +              | +                     |      |
| Phenol (Carbolic acid)                           | C <sub>6</sub> H <sub>5</sub> OH                                                                           | 2070          | +                | +                     |      |
| Phenyl ethyl alcohol                             | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CH <sub>2</sub> OH                                           |               | +                | '                     |      |
| . ,,                                             | -0077                                                                                                      |               |                  |                       |      |

| Substance                                                      | Formula                                                                                                                  | Concentration      | Chemica of Vulca | al Resistan<br>thene | ce   |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|----------------------|------|
|                                                                |                                                                                                                          |                    | 20°C             | 60°C                 | 80°C |
| Phenyl hydrazine hydrochloride                                 | C <sub>6</sub> H <sub>5</sub> NHNH <sub>2</sub> .HCI                                                                     |                    | +                |                      |      |
| Phenyl sulphonate (Sodium dodecyl                              |                                                                                                                          |                    |                  |                      |      |
| benzene sulphonate)                                            | $C_{12}H_{25}C_6H_4SO_3Na$                                                                                               |                    | +                | +                    |      |
| Phosgene, liquid                                               |                                                                                                                          | 100%               | -                |                      |      |
| Phosphoric acid, aqueous                                       | H <sub>3</sub> PO <sub>4</sub>                                                                                           | 50%                | +                | +                    | +    |
| Phosphoric acid, aqueous                                       | 200                                                                                                                      | 80%95%             | +                |                      |      |
| Phosphorus oxychloride                                         | POCI <sub>3</sub>                                                                                                        | 1000/              | +                |                      |      |
| Phosphorus pentoxide                                           | P <sub>2</sub> O <sub>5</sub>                                                                                            | 100%               | +                |                      |      |
| Phosphorus trichloride                                         | PCI <sub>3</sub>                                                                                                         | 50%                | +                |                      |      |
| Phthalic acid, aqueous Phthalic acid dibutyl ester             | $C_6H_4-1, 2-(CO_2H)_2$                                                                                                  | 50%                | +                | +                    |      |
| (Dibutyl phthalate)                                            | C <sub>6</sub> H <sub>4</sub> (C00C <sub>4</sub> H <sub>9</sub> ) <sub>2</sub>                                           | techn. grade       | +                |                      |      |
| Picric acid, aqueous                                           | $(O_2N)_3C_6H_2OH$                                                                                                       | 1%                 | +                |                      |      |
| Pineapple juice                                                | (0 <sub>2</sub> N/ <sub>3</sub> U <sub>6</sub> H <sub>2</sub> UH                                                         | 1/6                | +                | +                    |      |
| Pine needle oil                                                | /                                                                                                                        | /                  | +                | +                    |      |
| Polyglycols                                                    |                                                                                                                          | /                  |                  | +                    |      |
| Potassium aluminium sulphate,                                  | / /                                                                                                                      |                    | '                | '                    |      |
| aqueous                                                        | KAI(SO <sub>4</sub> ) <sub>2</sub> . 12H <sub>2</sub> O                                                                  | any                | +                | +                    | +    |
| Potassium bicarbonate, aqueous                                 | KHCO <sub>2</sub>                                                                                                        | saturated          |                  | +                    | +    |
| Potassium bicromate, aqueous                                   | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                                                                            | any                | +                | +                    | +    |
| Potassium bisulphate, aqueous                                  | KHSO <sub>4</sub>                                                                                                        | saturated          | +                | +                    | +    |
| Potassium <i>meta</i> bisulphate, aqueous                      | K <sub>2</sub> S <sub>2</sub> O <sub>5</sub>                                                                             | saturated          | +                | +                    | +    |
| Potassium borate, aqueous                                      | KBO <sub>2</sub>                                                                                                         | 1%                 | +                | +                    | +    |
| Potassium bromate, aqueous                                     | KBrO <sub>3</sub>                                                                                                        | up to 10%          | +                | +                    | +    |
| Potassium bromide, aqueous                                     | KBr                                                                                                                      | any                | +                | +                    | +    |
| Potassium carbonate                                            | K <sub>2</sub> CO <sub>3</sub> , K <sub>2</sub> CO <sub>3</sub> . 1 <sup>1</sup> / <sub>2</sub> H <sub>2</sub> ), Potash | any                | +                | +                    | +    |
| Potassium chlorate, aqueous                                    | KCIO <sub>3</sub>                                                                                                        | any                | +                | +                    | +    |
| Potassium chloride, aqueous                                    | KCI                                                                                                                      | any                | +                | +                    | +    |
| Potassium chromate, aqueous                                    | K <sub>2</sub> CrO <sub>4</sub>                                                                                          | 40%                | +                | +                    | +    |
| Potassium chromic sulphate                                     | /                                                                                                                        | / /                |                  |                      |      |
| (Chrome alum), aqueous                                         | KCr)SO <sub>4</sub> ) <sub>2</sub> . 12H <sub>2</sub> 0                                                                  | / _                | +                | +                    | +    |
| Potassium cyanide, aqueous                                     | KCN                                                                                                                      | any                | +                | + /                  | +    |
| Potassium dichromate, aqueous                                  | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                                                                            | saturated          | +                | +                    | +    |
| Potassium ferricyanide, aqueous                                | K <sub>3</sub> Fe(CN) <sub>6</sub>                                                                                       | any                | +                | +                    | +    |
| Potassium ferrocyanide, aqueous                                | K <sub>4</sub> Fe(CN) <sub>6</sub> . 3H <sub>2</sub> O                                                                   | saturated          | +                | +                    | +    |
| Potassium fluoride, aqueous                                    | KF                                                                                                                       | any                | +                | +                    | +    |
| Potassium hexacyanoferrate, aqueous                            | K <sub>3</sub> Fe(CN) <sub>6</sub> or K <sub>4</sub> Fe(CN) <sub>6</sub> . 3H <sub>2</sub> O                             | any                | +                | +                    | +    |
| Potassium hydrogen carbonate,                                  | /                                                                                                                        |                    |                  | /                    |      |
| aqueous                                                        | KHCO <sub>3</sub>                                                                                                        | saturated          | +                | +                    | +    |
| Potassium hydrogen sulphate, aqueous                           | KHSO <sub>4</sub>                                                                                                        | saturated          | +                | +                    | +    |
| Potassium hydrogen sulphate, aqueous                           | $K_2S_2O_5$                                                                                                              | saturated          | +                | +                    | +    |
| Potassium hydroxide, aqueous                                   | КОН                                                                                                                      | any                | +                | +                    | +    |
| Potassium iodide, aqueous                                      | KI                                                                                                                       | any                | +                | +                    | +    |
| Potassium nitrate, aqueous                                     | KNO <sub>3</sub>                                                                                                         | any                | +                | +                    | +    |
| Potassium perchlorate, aqueous                                 | KCIO <sub>4</sub>                                                                                                        | 1%                 | +                | +                    |      |
| Potassium permanganate, aqueous                                | KMnO <sub>4</sub>                                                                                                        | up to 6%           | +                |                      |      |
| Potassium persulphate, aqueous                                 | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub>                                                                             | any                | +                | +                    | +    |
| Potassium phosphate, aqueous                                   | K <sub>2</sub> PO <sub>4</sub>                                                                                           | saturated          | +                | +                    | +    |
| Potassium sulphate, aqueous                                    | K <sub>2</sub> SO <sub>4</sub>                                                                                           | any                | +                | +                    | +    |
| Potassium sulphide, aqueous                                    | K <sub>2</sub> S                                                                                                         | saturated          | +                | +                    |      |
| Potassium sulphite, aqueous                                    | K <sub>2</sub> SO <sub>5</sub> .2H <sub>2</sub> O                                                                        | saturated          | +                | +                    | +    |
| Potassium thiosulphate, aqueous                                | K <sub>2</sub> S <sub>2</sub> O <sub>3</sub> .H <sub>2</sub> O                                                           | saturated          | +                | +                    | +    |
| Propanol (Propyl alcohol)                                      | CH <sub>3</sub> Ch <sub>2</sub> CHOH                                                                                     | techn. grade       | +                | +                    |      |
| i-Propanol (i-Propyl alcohol)<br>n-Propanol (n-Propyl alcohol) | (CH <sub>3</sub> ) <sub>2</sub> CHOH                                                                                     | techn. grade       | +                | +                    |      |
| Propargyl alcohol, aqueous                                     | CH <sub>3</sub> CH <sub>2</sub> CHDH<br>HC≡CCH <sub>2</sub> OH                                                           | techn. grade<br>7% | + +              | + +                  |      |
| i ropaigyi aiconol, aqueous                                    | 110-00112011                                                                                                             | 1/0                | T T              | T                    |      |

| Ì |   |  |
|---|---|--|
|   |   |  |
|   |   |  |
|   |   |  |
|   | 8 |  |
|   |   |  |
| ( |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |

| ropionic acid, aqueous<br>ropylene dichloride<br>ropylene glycol<br>yridine | CH <sub>3</sub> CH <sub>2</sub> COOH<br>CH <sub>2</sub> CI CH CI<br>CH <sub>2</sub> (CH <sub>2</sub> OH) <sub>2</sub> , Propane-1, 2-diol, CH <sub>3</sub> | any<br>100%              | 20°C  | 60°C | 80°( |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|------|------|
| ropylene dichloride<br>ropylene glycol                                      | CH <sub>2</sub> CI CH CI<br>CH <sub>2</sub> (CH <sub>2</sub> OH) <sub>2</sub> , Propane-1, 2-diol, CH <sub>3</sub>                                         |                          |       |      |      |
|                                                                             |                                                                                                                                                            | 100/6                    | + -   | +    | -    |
| yridine                                                                     | CH(OH).CH <sub>2</sub> OH, Propane-1,3-diol                                                                                                                |                          | +     | +    | +    |
|                                                                             | C <sub>5</sub> H <sub>5</sub> N                                                                                                                            | /                        | *     | *    |      |
| luinine                                                                     | $C_{20}H_{24} N_2 O_2$                                                                                                                                     | /                        | +     | +    |      |
| Aubber dispersions (latex)                                                  | /                                                                                                                                                          | /                        | +     | +    |      |
| alicylic acid<br>alt brines                                                 | HOC <sub>6</sub> H <sub>4</sub> COOH                                                                                                                       | saturated                | + +   | + +  |      |
| auerkraut (pickled cabbage)                                                 |                                                                                                                                                            | Saturated                | +     | +    | +    |
| ea water                                                                    | /                                                                                                                                                          | //                       | +     | +    | +    |
| ilicic acid, aqueous                                                        | H <sub>2</sub> SiO <sub>3</sub>                                                                                                                            | any                      | +     | +    |      |
| ilicone emulsion                                                            | 2 0                                                                                                                                                        | as supplied commercially |       |      |      |
| ilicone oil                                                                 | / /                                                                                                                                                        | technical                | +     | +    | +    |
| ilver nitrate, aqueous                                                      | Ag NO <sub>3</sub>                                                                                                                                         | any                      | +     | +    | +    |
| oap solution, aqueous                                                       | / /                                                                                                                                                        | any                      | +     | +    | +    |
| oda (Sodium carbonate), aqueous                                             | / /                                                                                                                                                        | any                      | +     | +    | +    |
| odium acetate, aqueous                                                      | CH <sub>3</sub> ,COONa, CH <sub>3</sub> .COONa.3H <sub>2</sub> O                                                                                           | any                      | +     | +    | +    |
| odium aluminium sulphate                                                    | Na AI(SO <sub>4</sub> ) <sub>2</sub> 12H <sub>2</sub> O                                                                                                    |                          | +     | +    | +    |
| odium benzoate, aqueous                                                     | C <sub>6</sub> H <sub>5</sub> . COONa                                                                                                                      | any                      | +     | +    | +    |
| odium bicarbonate, aqueous                                                  | NaHCO <sub>3</sub>                                                                                                                                         | saturated                | +     | +    | +    |
| odium bisulphate, aqueous                                                   | NaHSO <sub>4</sub> . H <sub>2</sub> O                                                                                                                      | saturated                | +     | +    | +    |
| odium bisulphite, aqueous                                                   | Na <sub>2</sub> S <sub>2</sub> O <sub>5</sub>                                                                                                              | saturated                | +     | +    | +    |
| odium borate<br>odium bromide                                               | Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub><br>NaBr                                                                                                      |                          | +     | +    | +    |
| odium carbonate, aqueous                                                    | Na <sub>2</sub> CO <sub>3</sub> , Na <sub>2</sub> CO <sub>3</sub> 10H <sub>2</sub> O, Soda                                                                 | any                      | + +   | + +  | +    |
| odium chlorate, aqueous                                                     | NaClO <sub>3</sub>                                                                                                                                         | saturated                | / +   | +    | Т    |
| odium chloride, aqueous                                                     | NaCl                                                                                                                                                       | any                      | /   ; | +    | +    |
| odium chlorite, aqueous                                                     | NaClO <sub>2</sub>                                                                                                                                         | 50%                      | +     | +    | '    |
| odium chromate                                                              | Na <sub>2</sub> CrO <sub>4</sub>                                                                                                                           | 00,0                     | +     | + /  | +    |
| odium cyanide                                                               | NaCN                                                                                                                                                       | /                        | +     | +/   | +    |
| odium dichromate                                                            | Na <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> . 2H <sub>2</sub> O                                                                                         | /                        | +     | +    | +    |
| odium dodecylbenzenesulphonate                                              | $C_{12}H_{25}C_6H_4SO_3Na$                                                                                                                                 |                          | +     | +    | +    |
| odium ferricyanide                                                          | Na <sub>3</sub> fe(CN) <sub>6</sub> H <sub>2</sub> O                                                                                                       |                          | +     | /+   | +    |
| odium fluoride                                                              | NaF                                                                                                                                                        |                          | +     | +    | +    |
| odium hexacyanoferrate (III)                                                | /                                                                                                                                                          |                          |       |      |      |
| (sodium ferrocyanide), aqueous                                              | Na <sub>3</sub> Fe(CN) <sub>6</sub> . H <sub>2</sub> O                                                                                                     |                          | +     | +    | +    |
| odium hexacyanoferrate (II)                                                 | Na <sub>4</sub> Fe(CN) <sub>6</sub> . 3H <sub>2</sub> O                                                                                                    | /                        | +     | +    | +    |
| odium hexametaphosphate, aqueous                                            | (NaPO <sub>3</sub> ) <sub>6</sub>                                                                                                                          | saturated                | +     | +    | +    |
| odium hydrogen carbonate, aqueous                                           | Na HCO <sub>3</sub>                                                                                                                                        | 1 /                      | +     | +    | +    |
| odium hydrogen sulphate, aqueous                                            | NaHSO <sub>4</sub>                                                                                                                                         | saturated                | +     | +    | +    |
| odium hydrogen sulphite, aqueous                                            | NaHSO <sub>3</sub>                                                                                                                                         | saturated                | +     | +    | +    |
| odium hydroxide, aqueous                                                    | NaOH                                                                                                                                                       | saturated                | +     | +    | +    |
| odium hydroxide, solid<br>odium hypochlorite, aqueous with                  | /                                                                                                                                                          | /                        | +     | +    |      |
| ≥5% active chlorine                                                         | NaOCI                                                                                                                                                      | /                        | _     | _    | _    |
| odium nitrate, aqueous                                                      | NaNO <sub>3</sub>                                                                                                                                          | any                      | +     | +    | +    |
| odium perborate, aqueous                                                    | NaBO <sub>3</sub> . 4H <sub>2</sub> O                                                                                                                      | any                      |       | '    | 1    |
| odium phosphate(s)                                                          | Na <sub>2</sub> HPO <sub>4</sub> , NaPO <sub>4</sub> . 12H <sub>2</sub> O NaH <sub>2</sub> PO <sub>4</sub> ,                                               | /                        |       |      |      |
| oa.a prioopriato(o)                                                         | Na <sub>4</sub> P <sub>2</sub> ) <sub>7</sub> . 10H <sub>2</sub> 0                                                                                         | any                      | +     | +    | +    |
| odium silicate, aqueous                                                     | A waterglass, NaO. x SiO <sub>2</sub> where x                                                                                                              | "                        |       |      |      |
| A                                                                           | = 3 to 5                                                                                                                                                   | any                      | +     | +    | +    |
| odium sulphate, aqueous                                                     | Na <sub>2</sub> SO <sub>4</sub> , Na <sub>2</sub> SO <sub>4</sub> . 10H <sub>2</sub> O, Glauber's salt                                                     | cold saturated           | +     | +    | +    |
| odium sulphide, aqueous                                                     |                                                                                                                                                            | saturated                | +     | +    |      |

| Sodium sulphite, aqueous $Na_2SO_3$ , $Na_2SO_39H_2O$ 40% $+$ $+$ $+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Substance                  | Formula                                                                                       | Concentration | Chemical Resistance of Vulcathene |          |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------|---------------|-----------------------------------|----------|------|
| Na_RQ10H_A_0   Na_RQ1   Na_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                                                                               |               | 20°C                              | 60°C     | 80°C |
| Soldium theraborate (Boraca), aqueous Soldium through thro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sodium sulphite. aqueous   | Na <sub>2</sub> SO <sub>2</sub> , Na <sub>2</sub> SO <sub>2</sub> 9H <sub>2</sub> O           | 40%           | +                                 | +        | +    |
| Soften in this supplement and supplement is supplemented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                                               | saturated     | +                                 | 1        | +    |
| Soft soap System bear and Spermansch Sperman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                                               |               |                                   |          |      |
| Syspate and   Spermanch    Shamic chloride, aqueous   SnOL <sub>2</sub> , SnOL <sub>2</sub> , SH <sub>2</sub> O   saturated   +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 2-2-3/ - 2-2-3 - 2-                                                                           |               | +                                 |          |      |
| Spermaneth   Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                                                               | /             | +                                 |          |      |
| Samine, Shrinde, aqueous   SanCle, ShCle,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                                                               | /             | +                                 |          |      |
| Sandous   Sandy   Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | SnCl <sub>4</sub> , SnCl <sub>4</sub> .5H <sub>2</sub> O                                      | saturated     | +                                 | +        | +    |
| Starch, augmous   C <sub>4</sub> H <sub>11</sub> D <sub>5</sub>   any   +   +   +   +   +   +   +   +   +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stannous chloride, aqueous |                                                                                               | any           | +                                 | +        | +    |
| 18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                               | any           | +                                 | +        | +    |
| Starch syrup   Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Starch gum                 | 0 10 0                                                                                        | 18%           | +                                 | +        | +    |
| Stering and (See Note 2)   CH <sub>3</sub> (CHs)- <sub>3</sub> (200H   CHs)- <sub>4</sub> (200H   CHs) |                            |                                                                                               | /             | +                                 | +        | +    |
| Commonstration   Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | CH <sub>3</sub> .(CH <sub>2</sub> ) <sub>16</sub> .COOH                                       | /             | +                                 |          |      |
| Nocinic acid, aqueous   HoOC(CH <sub>2</sub> )-200H   50%   +   +   +   +   +   +   +   +   +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                                               | /             | +                                 |          |      |
| Sugar symp         H <sub>2</sub> SO <sub>4</sub> up to 50%         +         +         +         +         +         Dybphraic acid, aqueous         80%         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         + <t< td=""><td></td><td></td><td>50%</td><td>+</td><td>+  </td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                                                               | 50%           | +                                 | +        |      |
| Subpturic acid, aqueous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · •                        | , ,                                                                                           |               |                                   |          | +    |
| Subpturic acid, aqueous   Subpturic acid, aqueous   Subpturic acid, aqueous   Subpturic (acid, aqueous   Subpturic (acid, aqueous acid   H,SO <sub>3</sub>   + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =                          | H <sub>2</sub> SO <sub>4</sub>                                                                | up to 50%     |                                   |          |      |
| Sulphuric acid, aqueous   Sg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | ' /                                                                                           |               |                                   | 1        |      |
| Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                                                               |               | *                                 | _        |      |
| Aughbury Chloride (sulphonyl chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | S <sub>8</sub>                                                                                |               | +                                 | +        | +    |
| Julphury Chloride (Sulphonyl chloride)     SO <sub>2</sub> Cl <sub>2</sub> techn. grade     -     -     -     -       Julphur dixide, aqueous     SO <sub>2</sub> any     +     +     +       Julphur trioxide     SO <sub>3</sub> -     -     -     -     -       Jallow     techn. grade     +     +     +       Julphur trioxide     SO <sub>3</sub> techn. grade     +     +       Julphur trioxide     techn. grade     -     -     -       Julphur trioxide     techn. grade     -     -     -     -       Julphu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                               |               | +                                 | +        |      |
| Sulphur dioxide, aqueous   SO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                                                                               | techn. grade  | _                                 | _        | _    |
| Hechn.grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                                                               |               | +                                 | +        |      |
| Authoritoride   SO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 222                                                                                           |               |                                   |          |      |
| allow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | SO <sub>2</sub>                                                                               |               | 1.                                | _        | _    |
| 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                          | ,                                                                                             |               | 1/                                |          |      |
| ranning extracts, vegetable artarcts, vegetable artarcts acid, aqueous (CHOH.COOH) $_2$ any $+$ $+$ $+$ etrachloroethane cetrachloroethane (Carbon tetrachloride) (CTL $_2$ CHCl $_2$ CHc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                               |               | +                                 | +        |      |
| CHOH. COOH)   CHO   CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                                                               |               |                                   | 1        |      |
| Fetrachloroethane  (Carbon tetrachloride)  (Cathydrofuran  CCCl <sub>4</sub> CHc <sub>1</sub> (CH <sub>2</sub> ), CH <sub>2</sub> 0  Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  Efetrahydronaphtalene  C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Efetrahydronaphtalene  E                                                                  |                            |                                                                                               | as supplied   | +                                 | *        |      |
| Tetrachloromethane (Carbon tetrachloride) (CCl <sub>4</sub> techn. grade $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | -                                                                                             | any           | +                                 | +        |      |
| (Carbon tetrachloride)  (CCl <sub>4</sub> CH <sub>2</sub> (CH <sub>2</sub> ). CH <sub>2</sub> 0  Etrahydrofuran  (CH <sub>2</sub> (CH <sub>2</sub> ). CH <sub>2</sub> 0  Etrahydronaphtalene  (C <sub>0</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Etrahydronaphtalene  (C <sub>0</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Etrahydronaphtalene  (C <sub>0</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Etrahydronaphtalene  (C <sub>0</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Etrahydronaphtalene  (C <sub>0</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Etrahydronaphtalene  (C <sub>0</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Etrahydronaphtalene  (C <sub>0</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Etrahydronaphtalene  (C <sub>0</sub> H <sub>3</sub> CO <sub>2</sub> H  Etrahydronaphtalene  (C <sub>0</sub> H <sub>3</sub> CH <sub>3</sub> CH  Etrahydronaphtalene  (C <sub>0</sub> H <sub>3</sub> CH <sub>3</sub> CH  Etrahydronaphtalene  (C <sub>0</sub> H <sub>3</sub> CH <sub>3</sub> COOH  Etrahydronaphtalene  (C <sub>0</sub> H <sub>3</sub> COOH  Etrahydronaphtalene  (C <sub>0</sub> H <sub>3</sub> COOH  Etrahydronaphtalene  (C <sub>0</sub> H <sub>3</sub> COOH  Etrahydronaphtalene  (CH <sub>3</sub> COOH  Etrahydronaphtalene  Etrahydronaphtalene  (EHC)COL <sub>2</sub> Etrahydronaphtalene  Etrahydronaph                                                                                                                                                                                                                                                                                                                                                     |                            | CHCl <sub>2</sub> . CHCl <sub>2</sub>                                                         | / /           | -                                 | -        | -    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                               | / _           |                                   |          |      |
| $ \begin{array}{ c c c c } \hline \text{Fetrahydronaphtalene} & \hline C_6H_4\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2} & \text{techn. grade} & - & - & - \\ \hline \hline \text{Finioglycolic acid} & HSCH_2 CO_2 H & + & + \\ \hline \text{Finionyl chloride} & SOCl_2 & - & - & - \\ \hline \text{Finiophene} & S(CH)_3\text{CH} & - & - & - \\ \hline \text{Folucie acids (methyl benzoic acids)} & CH_3. C_6H_4 \text{COOH} & \text{saturated} & * & \\ \hline \text{Finiotyl phosphate} & (C_4H_9)_3 PO_4 & + & + \\ \hline \text{Firichloroacetic acid} & CCl_3 \text{ CHO} & \text{techn. grade} & + & + \\ \hline \text{Firichloroacetic acid} & CCl_3 \text{ CHO} & \text{techn. grade} & + & + \\ \hline \text{Firichloroacetylyene} & CHCl: CCl_2 & \text{techn. grade} & - & - & - \\ \hline \text{Firicesyl phosphate} & (CH_3. C_6H_4)_3 PO_4 & + & + \\ \hline \text{Firichloroacetylyene} & CHCl: CCl_2 & \text{techn. grade} & + & + \\ \hline \text{Firicesyl phosphate} & (CH_3. C_6H_4)_3 PO_4 & + & + \\ \hline \text{Firicesyl phosphate} & (CH_2. CCl_2)_3 N & + & + \\ \hline \text{Firicthanolamine} & (HO \text{ CH}_2\text{CH}_2)_3 N & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firicthanolamine} & Saturated & + & + \\ \hline \text{Firichloroacetic acid} & Saturated & + & + \\ \hline \text{Firichloroacetic acid} & Saturated & + & + \\ \hline \text{Firichloroacetic acid} & Saturated & + & + \\ \hline \text{Firichloroacetic acid} & Saturated & + & + \\ \hline \text{Firichloroacetic acid} & Saturated & + & + \\ \hline \text{Firichloroacetic acid} & Saturated & + & + \\ \hline \text{Firichloroacetic acid} & Saturated & + & + \\ \hline \text{Firichloroacetic acid} & Saturated & + & + \\ \hline \text{Firichloroacetic acid} & Saturated & + & + \\ \hline \text{Firichloroacetic acid} & Saturated & + & + \\ \hline \text{Firichloroacetic acid} & Saturated & + & + \\ \hline Firichloroacetic aci$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 7                                                                                             |               | -                                 | - /      | -    |
| Thioglycolic acid $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | etrahydrofuran             | CH <sub>2</sub> (CH <sub>2</sub> ). CH <sub>2</sub> 0                                         | techn. grade  |                                   | -/-      | -    |
| Thioglycolic acid $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                                               | /             |                                   |          |      |
| Thioglycolic acid $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                                               | /             |                                   | //       |      |
| Thioglycolic acid $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | etrahydronaphtalene        | C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> | techn. grade  | -                                 | /-       | -    |
| Thionyl chloride $SOCl_2$ $S(CH)_3CH$ $         -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ( )                        |                                                                                               | _             |                                   | /        |      |
| Thionyl chloride $SOCl_2$ $S(CH)_3CH$ $SOCl_2$ $SOCl_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                                               |               |                                   | /        |      |
| Thionyl chloride $SOCl_2$ $S(CH)_3CH$ $SOCl_2$ $S(CH)_3CH$ $SOCl_2$ $S(CH)_3CH$ $SOCl_2$ $S(CH)_3CH$ $SOCl_2$ $S(CH)_3CH$ $SOCl_2$ $S(CH)_3CH$ $SOCl_2$ $SO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hinglycolic acid           | HSCH, CO. H                                                                                   |               |                                   |          |      |
| Thiophene $S(CH)_3CH$ $C_6H_5$ . $CH_3$ $C_6H_4$ $COOH$ $Saturated$ $Sicular Sicular S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                               | /             |                                   | <u> </u> | _    |
| foluene $C_6H_5$ . $CH_3$ $CH_3$ . $C_6H_4$ COOH $CC_4H_9$ Saturated $CC_4H_9$ Saturate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | -                                                                                             | /             |                                   | _        | _    |
| oluic acids (methyl benzoic acids)  CH <sub>3</sub> . C <sub>6</sub> H <sub>4</sub> COOH  saturated  *  (C <sub>4</sub> H <sub>9</sub> ) <sub>3</sub> PO <sub>4</sub> richloroacetaldehyde (chloral)  richloroacetic acid  CCl <sub>3</sub> COOH  techn. grade  +  richloroacetic acid  CCl <sub>3</sub> COOH  techn. grade  +  richloroacetic acid  CH <sub>3</sub> . C <sub>6</sub> H <sub>4</sub> ) <sub>3</sub> PO <sub>4</sub> techn. grade  +  richloroacetic acid  CH <sub>3</sub> . C <sub>6</sub> H <sub>4</sub> ) <sub>3</sub> PO <sub>4</sub> richloroacetic acid  CCl <sub>3</sub> COOH  techn. grade  +  richloroacetic acid  techn. grade  +  richloroacetic acid  techn. grade  +  richloroacetic acid  techn. grade  -  -  -  -  -  -  -  -  -  -  -  -  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | торполо                    |                                                                                               | /             |                                   |          |      |
| coluic acids (methyl benzoic acids)  CH <sub>3</sub> . C <sub>6</sub> H <sub>4</sub> C00H  saturated  *  CH <sub>3</sub> . C <sub>6</sub> H <sub>4</sub> C00H  saturated  *  CH <sub>3</sub> . C <sub>6</sub> H <sub>4</sub> C00H  saturated  *  + + + +  richloroacetaldehyde (chloral)  richloroacetic acid  CCl <sub>3</sub> CH0  techn. grade  + +  richloroacetic acid  CCl <sub>3</sub> C00H  techn. grade  +  richloroacetic acid  CHCl: CCl <sub>2</sub> techn. grade  +  richloroacetic acid  +  CHCl: CCl <sub>2</sub> techn. grade  +  ricesyl phosphate  (CH <sub>3</sub> .C <sub>6</sub> H <sub>4</sub> ) <sub>3</sub> PO <sub>4</sub> riethanolamine  (H0 CH <sub>2</sub> CH <sub>2</sub> ) <sub>3</sub> N  +  riethanolamine  2,2'2"- Nitrilotriethanol), aqueous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                                                                               | /             |                                   |          |      |
| foluic acids (methyl benzoic acids) $CH_3$ . $C_6H_4$ COOH saturated $++++++++++++++++++++++++++++++++++++$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                                                               | 1             |                                   |          |      |
| fromato juice formato juice f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                                               |               |                                   | -        | -    |
| ributyl phosphate $(C_4H_9)_3$ PO $_4$ techn. grade $+$ $+$ richloroacetic acid $CCl_3$ CHO techn. grade $+$ $+$ richloroacetic acid $CCl_3$ COOH techn. grade $+$ richloroathylene $CHCl: CCl_2$ techn. grade $+$ ricesyl phosphate $(CH_3.C_6H_4)_3$ PO $_4$ $+$ riethanolamine $(HO CH_2CH_2)_3$ N $+$ riethanolamine $(HO CH_2CH_2)_3$ Saturated $+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | CH <sub>3</sub> . C <sub>6</sub> H <sub>4</sub> COOH                                          | saturated     |                                   |          |      |
| richloroacetaldehyde (chloral) CCI <sub>3</sub> CHO techn. grade + + richloroacetic acid CCI <sub>3</sub> COOH techn. grade + + richloroacetic acid CCI <sub>3</sub> COOH techn. grade +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                          | (0.11.) 00                                                                                    | /             |                                   | 1        | +    |
| techn. grade +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                                               | toolin arada  |                                   | 1        |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                               | _             |                                   | +        |      |
| Tricesyl phosphate (CH <sub>3</sub> .C <sub>6</sub> H <sub>4</sub> ) <sub>3</sub> PO <sub>4</sub> + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                                                                               |               |                                   |          |      |
| riethanolamine (HO CH <sub>2</sub> CH <sub>2</sub> ) <sub>3</sub> N + riethanolamine 2,2'2"- Nitrilotriethanol), aqueous + saturated +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                                               | tecnn. grade  |                                   | -        | -    |
| riethanolamine 2,2'2"- Nitrilotriethanol), aqueous saturated +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                                               | /             |                                   |          |      |
| 2,2'2"- Nitrilotriethanol), aqueous saturated +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | (HU CH <sub>2</sub> CH <sub>2</sub> ) <sub>3</sub> N                                          |               | +                                 |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                               |               |                                   |          |      |
| rietnyiene giycoi $  HUCH_2CH_2UCH_2CH_2CH_2CH$ $  +   +  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | HOOLI OIL OOLI OIL OOLI OIL OIL                                                               | saturated     |                                   |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rietnylene glycol          | HUCH2CH2UCH2CH2UCH2CH2OH                                                                      |               | +                                 | +        |      |

| Trioctyl phosphate Trisodium phosphate Tri-B-chloroethylphosphate Turpentine oil ®Tween 20 and 80  Urea, aqueous Uric acid (See Note 2) Urine  Vaseline | $(C_8H_{17})_3PO_4\\Na_3PO_412H_2O\\(CICH_2CH_2O)_3PO\\\\NH_2.CO.NH_2\\C_5H_4N_4O_3$                                                               | techn. grade up to 33%   | 20°C<br>+<br>+<br>+<br>+<br>+<br>-<br>+ | 60°C + + + + + + + + + + + + + + + + + + + | + - |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|--------------------------------------------|-----|
| Trisodium phosphate Tri-B-chloroethylphosphate Turpentine oil ®Tween 20 and 80  Urea, aqueous Uric acid (See Note 2) Urine  Vaseline                    | Na <sub>3</sub> PO <sub>4</sub> 12H <sub>2</sub> O<br>(CICH <sub>2</sub> CH <sub>2</sub> O) <sub>3</sub> PO<br>NH <sub>2</sub> .CO.NH <sub>2</sub> | /                        | + + + + +                               | -+                                         | +   |
| Tri-B-chloroethylphosphate Turpentine oil ®Tween 20 and 80 Urea, aqueous Uric acid (See Note 2) Urine Vaseline                                          | (CICH <sub>2</sub> CH <sub>2</sub> O) <sub>3</sub> PO<br>NH <sub>2</sub> .CO.NH <sub>2</sub>                                                       | /                        | + + +                                   | -+                                         | +   |
| Turpentine oil ®Tween 20 and 80 Urea, aqueous Uric acid (See Note 2) Urine Vaseline                                                                     | NH <sub>2</sub> .CO.NH <sub>2</sub>                                                                                                                | /                        | +                                       | +                                          |     |
| ©Tween 20 and 80  Urea, aqueous  Uric acid (See Note 2)  Urine  Vaseline                                                                                |                                                                                                                                                    | /                        | +                                       | +                                          | -   |
| Urea, aqueous<br>Uric acid (See Note 2)<br>Urine<br>Vaseline                                                                                            |                                                                                                                                                    | up to 33%                | +                                       |                                            |     |
| Uric acid (See Note 2)<br>Urine<br>Vaseline                                                                                                             |                                                                                                                                                    | up to 33%                |                                         | +                                          |     |
| Uric acid (See Note 2)<br>Urine<br>Vaseline                                                                                                             |                                                                                                                                                    | up to 33%                |                                         | 1 + 1                                      |     |
| Urine<br>Vaseline                                                                                                                                       | 05141403                                                                                                                                           | /                        | 1                                       |                                            | +   |
| Vaseline                                                                                                                                                | /                                                                                                                                                  |                          | +                                       | +                                          |     |
|                                                                                                                                                         | /                                                                                                                                                  | /                        |                                         |                                            |     |
|                                                                                                                                                         |                                                                                                                                                    | techn. grade             | +                                       | *                                          |     |
| Vinegar (wine vinegar)                                                                                                                                  | /                                                                                                                                                  | as supplied commercially | +                                       | +                                          |     |
| Vinylidene chloride                                                                                                                                     | /                                                                                                                                                  | аз зарриза запинатациј   |                                         | .                                          |     |
| (1,1 - Dicloroethylene)                                                                                                                                 | CH <sub>2</sub> CCI <sub>2</sub>                                                                                                                   | techn. grade             | -                                       | -                                          | -   |
| Vinyl acetate                                                                                                                                           | CH <sub>3</sub> COO.CH:CH <sub>2</sub>                                                                                                             | /                        | +                                       | *                                          |     |
| Viscose spinning solutions<br>Vitamin C                                                                                                                 |                                                                                                                                                    | /                        | +                                       | +                                          |     |
| Vitamin G<br>Vitamin preparations, dry (powder)                                                                                                         | / /                                                                                                                                                | /                        | + +                                     |                                            |     |
| ritariiii proparations, ary (powdor)                                                                                                                    | / /                                                                                                                                                | /                        | '                                       |                                            |     |
|                                                                                                                                                         | /                                                                                                                                                  | /                        |                                         |                                            |     |
| Walnut oil<br>Washing up liquids                                                                                                                        | /                                                                                                                                                  | usual                    | + +                                     | +                                          |     |
| Water, distilled                                                                                                                                        | H <sub>2</sub> 0                                                                                                                                   | usuai                    | +                                       | +                                          | +   |
| Whey                                                                                                                                                    | 20                                                                                                                                                 | /                        | 1+                                      | +                                          | +   |
| Whisky                                                                                                                                                  | /                                                                                                                                                  | /                        | +                                       |                                            |     |
| White spirit                                                                                                                                            | /                                                                                                                                                  | techn. grade             | -                                       | -                                          | -   |
| Wine                                                                                                                                                    | /                                                                                                                                                  | +                        | +                                       |                                            |     |
| Wine vinegar (table vinegar)                                                                                                                            | /                                                                                                                                                  | as supplied              | +                                       |                                            |     |
| /                                                                                                                                                       |                                                                                                                                                    | / _                      |                                         |                                            |     |
| Xylene                                                                                                                                                  | $C_6H_4(CH_3)_2$                                                                                                                                   | /                        | -                                       | - //                                       | -   |
|                                                                                                                                                         | /                                                                                                                                                  | /                        |                                         | _/                                         |     |
| Yeast                                                                                                                                                   | /                                                                                                                                                  |                          | +                                       | _/                                         |     |
|                                                                                                                                                         | / /                                                                                                                                                |                          |                                         | /                                          |     |
| Zinc carbonate (See Note 5)                                                                                                                             | ZnCO <sub>3</sub> .2ZnO3H <sub>2</sub> O                                                                                                           |                          | +                                       | / +                                        | +   |
| Zinc chloride, aqueous                                                                                                                                  | ZNCI <sub>2</sub>                                                                                                                                  | any                      | +                                       | +                                          |     |
| Zinc oxide (See Note 5)                                                                                                                                 | ZnO                                                                                                                                                |                          | +                                       | +                                          | +   |
| Zinc stearate                                                                                                                                           | [CH <sub>3</sub> (CH <sub>2</sub> ) <sub>16</sub> CO <sub>2</sub> ] <sub>2</sub> Zn                                                                |                          | +                                       | +                                          | +   |
| Zinc sulphate, aqueous                                                                                                                                  | ZnSO <sub>4</sub> .7H <sub>2</sub> O                                                                                                               | any                      | +                                       | +                                          | +   |
|                                                                                                                                                         | /                                                                                                                                                  | /                        |                                         |                                            |     |
|                                                                                                                                                         | /                                                                                                                                                  | /                        |                                         |                                            |     |
|                                                                                                                                                         | /                                                                                                                                                  | /                        |                                         |                                            |     |
|                                                                                                                                                         | /                                                                                                                                                  | /                        |                                         |                                            |     |
|                                                                                                                                                         | /                                                                                                                                                  | /                        |                                         |                                            |     |
|                                                                                                                                                         | . /                                                                                                                                                | /                        |                                         |                                            |     |
|                                                                                                                                                         | \ /                                                                                                                                                | /                        |                                         |                                            |     |
|                                                                                                                                                         |                                                                                                                                                    | /                        |                                         |                                            |     |
|                                                                                                                                                         |                                                                                                                                                    | /                        |                                         |                                            |     |
|                                                                                                                                                         |                                                                                                                                                    |                          |                                         |                                            |     |
|                                                                                                                                                         |                                                                                                                                                    |                          |                                         |                                            |     |
|                                                                                                                                                         |                                                                                                                                                    |                          |                                         |                                            |     |
| Classification: + = Resistant                                                                                                                           | <ul><li>Likely to be resistant</li></ul>                                                                                                           | - = Not resistant        |                                         | ata available                              |     |

# quotes@tipes.co.u

# **Durapipe UK Pipework Systems**



### Air-Line Xtra

 High performance thermoplastic pipework system for compressed air



### PLX

- Purpose designed for safe fuel transfer
- Suitable for pressure and vacuum applications
- · Resists fuel permeation



### Corzan

- Solvent weld thermoplastic pipe system for aggressive substances
- Designed specifically for use in highly corrosive conditions at temperatures up to 95°C
- · Valves range available



### Polypropylene

- Conveys chemicals at temperatures up to 100°C
- Excellent resistance to a wide range of substances
- Available in larger diameters up to 500mm
- Full range of valves



### SuperFLO ABS

- Lightweight
- · Easy to install
- · Wide temperature range
- · Tough and durable
- Corrosion resistant



### PVC-U

- Versatile, multi-purpose solvent weld pipework system with an extensive range of valves and fittings
- The established system for process and industrial handling of chemicals and water up to 60°C
- Guardian dual contained PVC-U pipework system



### Guardian

- Specialist dual contained pipework
- Patented Centra-Lok<sup>™</sup> system
- Visual or automated leak detection system available



### Valves & Flow Control

- Manual and actuated flow control solutions
- · For use with all Durapipe systems
- · Lightweight and easy to install



### HTA

- Pipe system for hot & cold water
- · Limescale & corrosion resistant
- Installed cost savings vs traditional materials



### Friaphon

- Sound attenuated drainage system
- Superb sound insulation with no lagging required
- Ideal for hospitals, hotels, office suites and apartments

Durapipe UK reserves the right to modify the details in this publication as products and specifications are updated and improved. The content of this publication is for general information only and it is the user's responsibility to determine the suitability of any product for the purpose intended.

For further information on all Durapipe UK products and services contact our Customer Services Department as detailed below.

### **Customer Services**

Tel: +44 (0)844 800 5509 Fax: +44 (0)1543 471682

Durapipe UK is a trade name of Glynwed Pipe Systems Ltd. Company Number 1698059.

### Registered office:

### Durapipe UK

Hyssop Close Swaffield Park Cannock Staffordshire WS11 7FU United Kingdom

Tel: +44 (0)1543 471680 Fax: +44 (0)1543 471682 email: enquiries@durapipe.co.uk web: www.durapipe.co.uk Twitter: @DurapipeUK

Tel: 01626 201092